DFT mit und ohne Translation

Ein Methodenvergleich mit Beispielen aus der Clusterchemie der Triele

Caroline Röhr

Internes Seminar

イロト イヨト イヨ

20. Dezember 2021

- **2** ORCA, Praktisches
- **3** Beispiel I: Die klassische Zintl-Phase Na₂Tl
- Beispiel II: KTl: WADE-Cluster, nur leicht verfehlt
- o Beispiel III: Endohedrale Cluster in $A_8[Ga@Tl_{10}]$
- $\mathbf{6}$ Beispiel IV: Trielide des K₈In₁₁-Typs
- Zusammenfassung

イロト イヨト イヨト

Vergleich: aktuelle Molekül- \leftrightarrow Festkörper-DFT

	Moleküle (+ Cluster)	Festkörper			
Atome	N	∞			
Koordinaten (D)	$N \times$ we nige AO	$\infty \times ?$			
Symmetrie (Str.)	Punktgruppe	Raumgruppe (3D periodisch)			
Basis-Funktionen	GTO, STO (atomartig)	atomartige + PW (APW+lo)			
Methoden	DFT, HF, Post-HF, CC, CI, MP2,	DFT			
	Geometrieoptimierung	meist nur 'Single-point'			
Energien	Gesamtenergien, strukturelle Stabilität				
	-	Bandstruktur			
	<i>E</i> -Lage der MOs ('MO-Schema')	Zustandsdichte (tDOS, pDOS)			
	HOMO-LUMO-Abstand	Bandlücke, Fermiflächen			
Symmetrie (ψ)	MOs: IR	'stars'			
ψ, ψ^2	Elektronendichten, Topologieanalysen im Realraum,				
	KS-Orbitale	(WANNIER)			
weitere	Schwingungs-Frequenzen,	Leitfähigkeit (e^{-} -Transport),			
Ergebnisse	Thermochemie, Reaktions-	Magnetismus, optische			
	pfade und -Mechanismen,	Eigenschaften, Feldgradienten			
	NMR-Parameter,	(NMR/Mößbauer-Parameter)			
Programme	ORCA, GAUSSIAN, etc.	WIEN2K, CRYSTALS, etc.			

vgl. Einleitung QM-Kurs (nächster Termin: 14.-25.3.2022)

イロト イヨト イヨト イヨト

Unsere drei Triel-Triangeln

20.12.2021

4 / 30

2 ORCA, Praktisches

3 Beispiel I: Die klassische Zintl-Phase Na₂Tl

Beispiel II: KTl: WADE-Cluster, nur leicht verfehlt

o Beispiel III: Endohedrale Cluster in $A_8[Ga@Tl_{10}]$

 $\mathbf{6}$ Beispiel IV: Trielide des K₈In₁₁-Typs

Zusammenfassung

イロト イロト イヨト

ORCA: Zum Programm, Praktisches

- ▶ F. Neese, ORCA, 5.0.1.: An ab initio, Density Functional and Semiempirical program package, MPI für Kohlenforschung, Mühlheim/Ruhr (2021).
- ► ORCA-Homepage: https://orcaforum.kofo.mpg.de/app.php/portal
- ▶ Binaries für Linux und Windows (statisch gegen MKL gebaut)
- ▶ gutes Wiki, aktives Forum, Riesen-Manual und Videos
- ▶ verschiedenste Basissätze und Funktionale (in DFT) etc.
- Geometrieoptimierung
- Ladungskompensation, verschiedene Ansätze
 - CPCM (polarizable continuum scheme)
- Praktisches:
 - eine relative einfache Eingabedatei
 - $\bullet \ > {\rm orca \ \$PROBLEM.inp} > \$PROBLEM.out$
 - div. zusätzliche Ausgaben \$PROBLEM.*
 - für bunte Bildchen \mapsto Konverter in molden-Format:
 - > orca_2mkl \$PROBLEM.out \mapsto \$PROBLEM.molden
- ▶ Nachteil (z.B. gegenüber GAUSSIAN):
 - minimalistische Symmetriebehandlung (nur bis PG2/m)
 - keine (einfache) Parallelisierung

イロト イヨト イヨト イヨト

ORCA: Musterdatei

```
# root: !-Zeile
   SCF:
              Spins: uks: Spin unrestricted SCF Kohn-Sham; rks: closed shell KS-SCF
   Funktional: bp = bp86; pbe, pbe0; RI-N"aherung in der DFT
#
   Basiss"atze: def2-tzvp (Def2-Basiss"atze Ahlrichs)
#
   Konvergenz: tightscf
#
   opt:
         Geometrieoptimierung
   cpcm(water) Solvatation mit 'Cosmo'Modell f"ur Wasserumgebung
#
! opt bp86 def2-TZVPP cpcm(water)
%scf
                  # Parameter f"ur den SCF-Zvklus, medium, tight
 convergence tight
 end
# -----
%output
                  # Ausgaben, hier Orbitale
    print[p_mos] 1
  end
# Koordinaten im xyz-Format in AA, Ladung (-8), 2S+1 (2), dann Koordinaten
* xyz -8 2
         2.54645
                    2.54645
                                    3 40928
Ga
        2.54645
                    2,54645
                                  0.36029
T1
Тl
                     0.12029
        1.58949
                                    2 13898
т1
        2.54645
                     2.54645
                                   6.45826
Тl
        3.50341
                     4.97261
                                    2.13898
Тl
       4.97261
                    1.58949
                                    2.13898
т1
         0.12029
                      3.50341
                                    2,13898
Тl
         3.50341
                     0.12029
                                    4 67957
т1
                      4,97261
                                    4,67957
         1.58949
Τ1
         0.12029
                      1.58949
                                    4.67957
                                                              イロト イロト イヨト イヨト
                                                                                        э.
тı
                      2 50244
                                    4 67057
        Caroline Böhr
                                                                               20 12 2021
```

7 / 30

Programme zur Darstellung der Ergebnisse (Auswahl)

- ▶ Molekel (Ugo Varetto, Vers. 5.4)
 - Download von Github
 - https://ugovaretto.github.io/molekel/wiki/pmwiki.php/Main/DownloadBinary.html
 - Input: molden-Datei
 - Output: nur PS/png/PDF-Export der Abbildungen (kein pov, kein vrml)
- ▶ gmolden (G. Schaftenaar, NL)
 - Homepage: https://www.theochem.ru.nl/molden/
 - molden5.1 ausreichend (keine sinnvollen Verbesserung in neueren Versionen!)
 - zum Bauen: QT4-devel erforderlich
 - Output: vrml + pov
- ▶ avogadro (2?) (aktuell: Vers. 1.2.0)
 - Download: https://sourceforge.net/projects/avogadro/
 - Linux: läuft nur im wine, Probleme mit libXmu-Library ?

イロト イヨト イヨト イヨト

- **2** ORCA, Praktisches
- ${\it 3}$ Beispiel I: Die klassische Zintl-Phase Na $_2 Tl$
- Beispiel II: KTl: WADE-Cluster, nur leicht verfehlt
- **(5)** Beispiel III: Endohedrale Cluster in $A_8[Ga@Tl_{10}]$
- $\mathbf{6}$ Beispiel IV: Trielide des K₈In₁₁-Typs
- Zusammenfassung

イロト イロト イヨト

$\rm Na_2Tl:$ Kristallstruktur, tDOS und Tl-pDOS

Strukturtyp		Na ₂ Tl
Kristallsystem		orthorhombisch
Raumgruppe		$C222_{1}$
Gitter-	a	887.97
parameter	b	1393.50
[pm]	c	1169.27
$d_{ m Tl-Tl}$		318-330 pm

$$4Na_2Tl \longrightarrow 8Na^+ + {}^{3b}Tl_4{}^8$$

•
$$(4 \times 3) + 8 = 20$$
 v.e. $\mapsto 10$ MOs

- ▶ aus der tDOS:
 - -8 bis -6 eV: 4 reine s-LCAOs insgesamt nichtbindend
 - -2 eV bis E_F : 6 reine *p*-LCAOs alle bindend
- ?? Richtig ??
- ?? Wie sehen die MOs (KS-Orbitale) aus ??

D. A. Hansen, J. F. Smith, Acta Crystallogr. B32, 836-845 (1967).

20.12.2021 10 / 30

Tl_4^{8-} : ORCA-Rechnung

▶ Geometrieoptimierung (PC, nicht parallel: Rechenzeit 5 min.)

イロト イヨト イヨト

20.12.2021

11 / 30

- \blacktriangleright ideales Tetraeder; Tl–Tl-Abstand: 334.4 pm
- ▶ Demo der KS-Orbitale, mit GMOLDEN
- ▶ Orbitalenergien:

Orbital	Besetzung	Energie in	h in eV
35	2.0000	-0.505099	-13.7444
36	2.0000	-0.349128	-9.5002
37	2.0000	-0.262350	-7.1389
38	2.0000	-0.262349	-7.1389
39	2.0000	-0.262349	-7.1389
40	2.0000	-0.083017	-2.2590
41	2.0000	-0.083017	-2.2590
42	2.0000	-0.083017	-2.2590
43	2.0000	-0.082369	-2.2414
44	2.0000	-0.067254	-1.8301
45	2.0000	-0.067254	-1.8301
46	0.0000	0.027305	0.7430
47	0.0000	0.027305	0.7430
48	0.0000	0.027305	0.7430
	Caroline Röhr		

- **2** ORCA, Praktisches
- **3** Beispiel I: Die klassische Zintl-Phase Na₂Tl

Beispiel II: KTl: WADE-Cluster, nur leicht verfehlt

- **(5)** Beispiel III: Endohedrale Cluster in $A_8[Ga@Tl_{10}]$
- $\mathbf{6}$ Beispiel IV: Trielide des K₈In₁₁-Typs
- Zusammenfassung

• • • • • • • • • • •

Caroline Röhr

DFT mit und ohne Translation

20.12.2021 13 / 30

$[Tl_6]^{6-}$ und $[Tl_6]^{8-}$ im Vergleich (ORCA-Rechnung)

- ▶ DFT(GTOs) mit bp86, Basissätze: def2-TZVPP (def2/RI-J für Tl), cpcm(water)
- ▶ kurz: BP86/[Def2-TZVPP/C]/CPCM
- diverse Startgeometrien
- Geometrieoptimierung mit unterschiedlichen Clusterladungen
- \blacktriangleright Ergebnis für $[\mathrm{Tl}_6]^{6-}$
 - PG: 4/mmm
 - **a** = **b** = 307.4 pm
 - c = d = 348.7 pm
 - LUMO 🕫
- ▶ Ergebnis für [Tl₆]^{8−}
 - PG: *m*3*m*
 - a bis d = 329.1 pm

イロト イヨト イヨト

- **2** ORCA, Praktisches
- 3 Beispiel I: Die klassische Zintl-Phase Na₂Tl
- Beispiel II: KTl: WADE-Cluster, nur leicht verfehlt
- **6** Beispiel III: Endohedrale Cluster in $A_8[Ga@Tl_{10}]$
- $\mathbf{6}$ Beispiel IV: Trielide des K₈In₁₁-Typs
- Zusammenfassung

• • • • • • • • • • •

Kristallstruktur von A_8 [Ga@Tl₁₀] (A=K, Rb, Cs)

Caroline Röhr

DFT mit und ohne Translation

20.12.2021 16 / 30

Zustandsdichten von $K_8[Zn@Tl_{10}]$ und $K_8[Ga@Tl_{10}]$

Bernard Lehmann

Caroline Röhr

DFT mit und ohne Translation

20.12.2021 17 / 30

イロト イヨト イヨト

Bernard Lehmann

Caroline Röhr

20.12.2021 18 / 30

KS-Orbitale und Elektronendichte

Caroline Röhr	DFT mit und ohne Translation		2	20.12.2021		19 /	30
Bernard Lehmann	4	< @ >	< ≣⇒	 < ≣ → 	æ	5	20

- **2** ORCA, Praktisches
- **3** Beispiel I: Die klassische Zintl-Phase Na₂Tl
- Beispiel II: KTl: WADE-Cluster, nur leicht verfehlt
- **(5)** Beispiel III: Endohedrale Cluster in $A_8[Ga@Tl_{10}]$
- $\mathbf{6}$ Beispiel IV: Trielide des K₈In₁₁-Typs
- Zusammenfassung

• • • • • • • • • • •

Unsere drei Triel-Triangeln

- ▶ Martha Falk
- Bernard Lehmann
- Elouan Mouon
- Armin El-Addad
- Philipp Schuldis

21 / 30

Kristallstruktur des K_8In_{11} -Typs¹

¹ W. Blase, G. Cordier, M. Somer, Z. Kristallogr. **194**, 150 (1991); ² M. Falk, B. Lehmann, E. Mouon, A. El-Addad, Ph. Schuldis; u. A. M. Falk, A. El-Addad, C. R. Z. Kristallogr. Suppl: **37**, 412 (2017). → 4 = → = →

20.12.2021 22 / 30

Zustandsdichten von $\mathrm{Cs}_8\mathrm{Ga}_{11}$ und $\mathrm{K}_8\mathrm{Tl}_{11}$

▶ verschiedenste Rechnungen, selbst auf einfachstem Niveau: M_{11}^{-7-} , d.h. 40 v.e., stabilisieren $\bar{6}2m$ -symmetrischen 11er-Cluster

▶ 11 nichtbindende s-MOs, 9 bindende p-MOs (Demo möglich)

Caroline Röhr

20.12.2021 23 / 30

$\mathrm{Cs}_8\mathrm{Ga}_{11}$

- Halbleiter, aufgrund der
 T-Abhängigkeit der Leitfähigkeit
- ► Cluster mit fast vollständiger $\bar{6}2m$ -Symmetrie

$\mathrm{K}_{8}\mathrm{Tl}_{11}$

- Metall (lt. *T*-Abhängigkeit von σ)
- Cluster nur noch 32-symmetrisch
 (b1 ≠ b2)

$\rm Cs_8Ga_{11}$

- Elektronen-Dichte vollständig im Cs-Würfel (ohne Abb.)
- ► \mapsto 'Elektrid' gemäß: $Cs_8Ga_{11} \longrightarrow$ $8Cs^+ + [Ga_{11}]^{7-} + e^-$
- Cluster selber bleibt elektronenpräzise und hochsymmetrisch

$\mathrm{K}_{8}\mathrm{Tl}_{11}$

- ► Elektronen-Dichte des 'extra'-Elektrons über Cluster und Würfel verteilt (Abb. ⇐)
- erklärt Symmetriereduktion des Clusters
- eine reine SOMO-Besetzung der Cluster-MOs passt nicht zur beobachteten Verzerrung
- ► → reine Molekülrechnung hier <u>nicht</u> ausreichend

- **2** ORCA, Praktisches
- **3** Beispiel I: Die klassische Zintl-Phase Na₂Tl
- Beispiel II: KTl: WADE-Cluster, nur leicht verfehlt
- **(5)** Beispiel III: Endohedrale Cluster in $A_8[Ga@Tl_{10}]$
- $\mathbf{6}$ Beispiel IV: Trielide des K₈In₁₁-Typs
- Zusammenfassung

• • • • • • • • • • •

- ORCA als freies, extrem m\u00e4chtiges Programm f\u00fcr Molek\u00fcltheorie (nicht nur DFT)
- ▶ mit CPCM jetzt sehr einfache Kompensation hoher (Anionen)-Ladungen möglich
- ▶ Visualisierung der KS-Orbitale (auch LUMO- und SOMO)
- ▶ Symmetrie-freie Rechnung (IR werden nicht ermittelt!)
- \blacktriangleright Grenzen der Anwendbarkeit im Festkörper beachten, s. K $_8 In_{11}\text{-}Typ~(Bsp.~IV)$

• • • • • • • • • • • •

- ORCA als freies, extrem m\u00e4chtiges Programm f\u00fcr Molek\u00fcltheorie (nicht nur DFT)
- ▶ mit CPCM jetzt sehr einfache Kompensation hoher (Anionen)-Ladungen möglich
- ▶ Visualisierung der KS-Orbitale (auch LUMO- und SOMO)
- ▶ Symmetrie-freie Rechnung (IR werden nicht ermittelt!)
- \blacktriangleright Grenzen der Anwendbarkeit im Festkörper beachten, s. K $_8 In_{11}\text{-}Typ~(Bsp.~IV)$

Schöne Weihnachtstage und alles Gute für 2022!

• • • • • • • • • • • •

Tl-Cluster, Übersichts-Tabelle (aus Paper)

Type (s.e.p.)	Cluster (ideal charge	Shape (no. of T)	Compound	Refe- rence	M-M distance range	Comme
Zintl (8-N bonds)	$[M_4]^{8-}$	tetrahedron (1 T)	$\begin{array}{l} {\mathop{\rm Na}}_8[{\rm In}_4] \\ {\mathop{\rm Na}}_8[{\rm TI}_4] \\ {\mathop{\rm Na}}_{23}{\rm K}_9[{\rm TI}_4]_2[{\rm TI}_5][{\rm TI}_3]_{1/3}[{\rm TI}]_{4/3} \\ {\mathop{\rm Sr}}_8[{\rm Ga}_4][{\rm Ga}_3], {\rm Ba}_8[{\rm Ga}_4][{\rm Ga}_3] \\ {\mathop{\rm Ca}}_{11}[{\rm Ga}_4][{\rm Ga}_3, {\rm Sr}_{11}[{\rm In}_4][{\rm In}]_3 \end{array}$	[1] [2] [3] [4] [5, 6, 7]	307-315 318-330 327-328 267-273 (A=Sr) 302 (M=In)	isoelect
Wade closo (n+1)	$[M_{5}]^{7-}$	trigonal bipyramid (tBP, 2 T)	$\begin{array}{c} {}^{\mathrm{Na}_{2}\mathrm{K}_{21}[\mathrm{Tl}_{5}]_{2}[\mathrm{Tl}_{9}]}\\ {}^{\mathrm{Na}_{23}\mathrm{K}_{9}[\mathrm{Tl}_{4}]_{2}[\mathrm{Tl}_{5}][\mathrm{Tl}_{3}]_{1/3}[\mathrm{Tl}]_{4/3}}\\ {}^{\mathrm{Na}_{9}\mathrm{K}_{16}[\mathrm{Tl}_{5}]_{2}[\mathrm{Cd}_{3}\mathrm{Tl}_{8}]} \end{array}$	[8] [3] [9]	307-354 321-328 314-332	
	$[M_{6}]^{8-}$	ideal octa- hedron (1 O)	$\begin{array}{l} & \operatorname{Cs}_{12}[\operatorname{Tl}_6][\operatorname{O}]_3 \\ & \operatorname{Na}_{14}\operatorname{K}_6[\operatorname{Tl}_6][M^{@\operatorname{Tl}}_{12}] \\ & \operatorname{Na}_{14}\operatorname{K}_6[\operatorname{Tl}_6][\operatorname{Na}^{@\operatorname{Tl}}_{12}] \\ & \operatorname{Ba}_5[\operatorname{Ga}_6][\operatorname{H}]_2 \end{array}$	[10] [11] [?] [12]	320-323 328 (<i>M</i> =Mg) 330-332 270-275	$M = M_{\rm H}$ ${\rm H}^-$ cent
n	[<i>M</i> ₆] ^{6–}	compressed octahedron (4 T)	$\begin{array}{c} {}^{\rm K_6[{\rm TI}_6]}_{{\rm Cs}_6[{\rm TI}_6]}\\ {}^{\rm K_{10}[{\rm TI}_6][{\rm O}]_2}\\ {}^{\rm Rb}_{10}[{\rm TI}_6][{\rm O}]_2\\ {}^{\rm Cs}_{10}[{\rm TI}_6][{\rm SiO}_4]\\ {}^{\rm Cs}_{10}[{\rm TI}_6][{\rm GeO}_4]\\ {}^{\rm Cs}_{10}[{\rm TI}_6][{\rm SiO}_3]\\ {}^{\rm Cs}_{22}[{\rm In}_6][{\rm SiO}_4]_4 \end{array}$	 [13] [14] [15] [15] [16] [16] [17] 	$\begin{array}{c} 306\text{-}347\ (381^1)\\ 303\text{-}343\ (374^1)\\ 301\text{-}370\ (358^1)\\ 301\text{-}365\ (357^1)\\ 304\text{-}380\ (380^1)\\ -\text{XXXX}\ (380^1)\\ -\text{XXX}\ (373^1)\\ 292\text{-}378 \end{array}$	dia dia dia stretche
	$[M_{7}]^{7-}$	pentagonal bi- pyramid (pBP, 5T) (icosahedra cap, IC)	$ \begin{smallmatrix} \kappa_{10}[\text{Tl}_7] \\ \text{Na}_{12}\kappa_{38}[\text{Au}]_2[\text{Tl}_7]_3[\text{Tl}_9]_3 \\ \text{Na}_9\kappa_{16}[\text{Tl}_7]_{0,9}[\text{Tl}_9]_{2,1} \end{smallmatrix} $	[18] [19] [20]	318-330 (346 ¹) 321-339 (339 ¹) 315-339	metallic
			↓ □ ▶		ヨト ・ヨト 三国	596
l	Caroline Röhr		T mit und ohne Translation		20.12.2021	28 / 30

Tl-Cluster, Übersichts-Tabelle (aus Paper) Forts.

Type (s.e.p.)	Cluster (ideal charge	Shape)(no. of T)	Compound	Refe- rence	M-M distance range	Comm
n - 1	$[M_8]^{6-}$	tetrahedra star (TS, 5T)	$\mathrm{Cs}_{18}[\mathrm{Tl}_8][\mathrm{O}]_6$	[21]	311-326	band g
		bicapped octa- hedron (2 $T/1$ O)	$\mathrm{Cs}_8[\mathrm{Tl}_8]\mathrm{O}$	[22]	311-326	band g
n	$[M_9]^{9-}$	icosahedra cutout, interpenetrating IC (8 T)	$\substack{\begin{smallmatrix} \mathrm{Na_2K_{21}[Tl_5]_2[Tl_9]}\\\mathrm{Na_9K_{16}[Tl_7]_{0.9}[Tl_9]_{2.1}}\\\mathrm{Na_{12}K_{38}[\mathrm{Au}]_2[Tl_7]_3[Tl_9]_3}\end{smallmatrix}}$	[8] [20] [19]	313-344 315-339 316-338	[T17]/
n - 2	$[M_{11}]^{7-}$	double tetrahedra star (DTS, 11 T)	$\begin{array}{l} {}^{\rm K_8[{\rm In_{11}}]\text{-type}}_{\rm Cs_8[{\rm Ga_{11}}][{\rm Cl}]\text{-type}}_{\rm Na_9K_{16}[{\rm Tl_5}]_2[{\rm Cd_3Tl_8}]}_{\rm K_8[{\rm HgIn_{10}}]} \end{array}$	[23] [25] [9] [27]	$\begin{array}{l} 306\text{-}323 \ (344/378^2) \ (\mathrm{Rb}/\mathrm{Tl}) \ [?, 24] \\ 306\text{-}320 \ (342/373^2) \ (\mathrm{Cs}/\mathrm{Tl}/\mathrm{Cl}) \ [26] \\ 312\text{-}325 \ (335/348^2) \\ 301\text{-}314 \ (327/362^2) \end{array}$	1 e.e.; diama [Cd ₃ T [HgIn ₁
		3 O sharing faces	$\mathrm{K}_{18}[\mathrm{Tl}_{11}][\mathrm{Au}_{2}\mathrm{Tl}_{9}][\mathrm{Au}]$	[28]	287-320 ³	$[Au_2T]$
endo- hedral	$[M@M_{10}]^{7-}$	stuffed bicapped square antiprism (16 T)	$\begin{array}{l} {\rm K}_8[{\rm Ga}_{}^{}{\rm @Tl}_{10}] \\ {\rm Rb}_8[{\rm Ga}_{}^{}{\rm @Tl}_{10}] \\ {\rm Cs}_8[{\rm Ga}_{}^{}{\rm @Tl}_{10}] \\ {\rm K}_8[{\rm Zn}_{}^{}{\rm @Tl}_{10}] \\ {\rm K}_8[{\rm Zn}_{}^{}{\rm @In}_{10}] \end{array}$	* * [29] [30]	$\begin{array}{c} 316\text{-}320/369~(290/305^4)\\ 316\text{-}329~(290/306^4)\\ 317\text{-}330~(289/313^4)\\ 314\text{-}325/376~(291/293)\\ 304\text{-}314~(282/284^4) \end{array}$	1 e.e. 1 e.e. 1 e.e. diama diama
		stuffed centaur	$K_{10}[M@In_{10}]$ $Na_{10}[Ni@Ga_{10}]$	[31] [32]	296-331 (270-282 ⁴) (M =Ni) 260-290 (246-253 ⁴)	M = 1
_	$[{\it M}@{\it M}_{12}]^{11-}$	stuffed icosahedron (20 T)	$\begin{array}{l} {{\mathop{\rm Na}}_{3}{\mathop{\rm K}}_{8}[{\mathop{\rm TI}}{\scriptstyle @}{\mathop{\rm TI}}_{12}]} \\ {\mathop{\rm Na}}{\mathop{\rm K}}_{9}[{\mathop{\rm TI}}{\scriptstyle @}{\mathop{\rm TI}}_{12}] \\ {\mathop{\rm Na}}_{4}{\mathop{\rm A}}_{6}[{\mathop{\rm TI}}{\scriptstyle @}{\mathop{\rm TI}}_{12}] \\ {\mathop{\rm Na}}_{14}{\mathop{\rm K}}_{6}[{\mathop{\rm TI}}{\scriptstyle @}{\mathop{\rm TI}}_{12}] \end{array}$	[33] [34] [33] [11]	320-358 (320-327 ⁴) 326-343 (323 ⁴) 328-342 (322 ⁴) (A=Rb) 328-331 (314 ⁴) (M=Zn)	ESR si 1 d.e. 1 d.e., M = Z
Caroline Röhr			DFT mit und ohne Transla	tion	20.12.2021 29	9 / 30

Literatur zur Tabelle

1

1

1

1

ì

ì

Î

- S. Sevov, J. D. Corbett, J. Solid State Chem. 1993, 103, 114.
 - D. A. Hansen, J. F. Smith, Acta Crystallogr. 1967, B32, 836.
 - Z.-C. Dong, J. D. Corbett, Inorg. Chem. 1996, 35, 3107.
 - M. L. Fornasini, Acta Crystallogr. 1983, C39, 943.
 - M. L. Fornasini, F. Merlo, Z. Kristallogr. 1989, 187, 111.
 - M. Wendorff, C. Röhr, Z. Anorg. Allg. Chem. 2004, 630, 1768.
 - M. Wendorff, C. Röhr, J. Alloys Compd. 2008, 448, 128.
 - Z.-C. Dong, J. D. Corbett, J. Am. Chem. Soc 1994, 116, 3429.
 - D. Huang, J. D. Corbett, Inorg. Chem. 1999, 38, 316.
 - V. Saltykov, J. Nuss, U. Wedig, M. Jansen, Z. Anorg. Allg. Chem. 2011, 637, 357.
 - Z.-C. Dong, J. D. Corbett, Angew. Chem. Int. Ed. Engl. 1996, 35, 1006.
 - R. W. Henning, E. A. Leon-Escamilla, J.-T. Zhao, J. D. Corbett, Inorg. Chem. 1997, 36, 1282.
 - Z. Dong, J. D. Corbett, J. Am. Chem. Soc. 1993, 115, 11299.
 - Z.-C. Dong, J. D. Corbett .
 - A. Karpov, M. Jansen, Chem. Commun. 2006, 1706.
 - V. Saltykov, J. Nuss, M. Jansen, Z. Anorg. Allg. Chem. 2011, 637, 1163.

30 / 30