Neutronenbeugung

II. Strukturelle Charakterisierung (Beugung)

Vorlesung: Methoden der Festkörperchemie, WS 2018/2019, C. Röhr

Neutronen

Eigenschaften Erzeugung Fokussierung, Monochromatisierung Detektion

Nukleare Streuung 0

Grundlagen Pulverbeugung Einkristallbeugung

Magnetische Streuung 2

Grundlagen magnetischer Strukturen Pulverbeugung Einkristallbeugung

Neutronen

Eigenschaften Erzeugung Fokussierung, Monochromatisierung Detektion

Nukleare Streuung 0

Grundlagen Pulverbeugung Einkristallbeugung

Magnetische Streuung 2

Grundlagen magnetischer Strukturen Pulverbeugung Einkristallbeugung

- ▶ elastische Wechselwirkung Neutron (n) \longleftrightarrow Kern
- Prinzip analog zur Röntgenbeugung
- praktische Verwendung nach Probenarten
 - Pulver-Beugung (Rietveld)
 - Einkristall-Beugung

Theorie analog zur Röntgenstreuung

• Orte der Reflexe: Bragg'sche Gleichung
$$|\vec{r}_{hl}^*$$

Intensitäten, für Pulver:
$$F_{hld}^2 = I_{hkl} = \frac{I_{hkl}^{roh}}{1.744}$$
 mit den Strukturfaktoren

Röntgen: $F_{\vec{h}} = \sum_{j=1}^{N} f_j e^{2\pi i (\vec{h} \vec{x_j})}$ bzw. n: $F_{\vec{h}} = \sum_{j=1}^{N} b_j e^{2\pi i (\vec{h} \vec{x_j})}$

- Phasenproblem
- ggf. zusätzlich magnetische Wechselwirkungen

- ▶ elastische Wechselwirkung Neutron (n) \longleftrightarrow Kern
- Prinzip analog zur Röntgenbeugung
- praktische Verwendung nach Probenarten
 - Pulver-Beugung (Rietveld)
 - Einkristall-Beugung
- Theorie analog zur Röntgenstreuung
 - Orte der Reflexe: Bragg'sche Gleichung | r^{*}_{hkl} | =

$$|\vec{r}_{hkl}^*| = \frac{1}{d_{hkl}} = \frac{2\sin \Theta_{hkl}}{\lambda}$$

2.0

▶ Intensitäten, für Pulver: $F_{hkl}^2 = I_{hkl} = \frac{I_{hkl}^{\prime oh}}{LPAH_{hkl}}$ mit den Strukturfaktoren

Röntgen: $F_{\vec{h}} = \sum_{j=1}^{N} f_j e^{2\pi i (\vec{h} \vec{x}_j)}$ bzw. n: $F_{\vec{h}} = \sum_{j=1}^{N} b_j e^{2\pi i (\vec{h} \vec{x}_j)}$

- Phasenproblem
- I ggf. zusätzlich magnetische Wechselwirkungen
- apparativ sehr aufwändig (Erzeugung und Detektion von n)
 - ▶ schwache WW \mapsto mehr Probe/größere Kristalle erforderlich
- nur verwendet, wenn Röntgen (Labor, Synchroton) 'nicht ausreicht'
 - 1. Unterscheidung von im PSE benachbarten Elementen
 - 2. Ermittlung der Positionen von Leichtatomen
 - 3. Bestimmung magnetischer Strukturen
- ▶ zusätzlich \mapsto inelastische Neutronenstreuung \mapsto s. IR/Raman

- ▶ elastische Wechselwirkung Neutron (n) \longleftrightarrow Kern
- Prinzip analog zur Röntgenbeugung
- praktische Verwendung nach Probenarten
 - Pulver-Beugung (Rietveld)
 - Einkristall-Beugung
- Theorie analog zur Röntgenstreuung
 - Orte der Reflexe: Bragg'sche Gleichung $|\vec{r}_{hkl}^*|$ =

$$|\vec{r}_{hkl}^*| = \frac{1}{d_{hkl}} = \frac{2\sin\Theta_h}{\lambda}$$

▶ Intensitäten, für Pulver:
$$F_{hkl}^2 = I_{hkl} = \frac{I_{hkl}^{roh}}{LPAH_{hkl}}$$
 mit den Strukturfaktoren

Röntgen: $F_{\vec{h}} = \sum_{j=1}^{N} f_j e^{2\pi i (\vec{h} \cdot \vec{x}_j)}$ bzw. n: $F_{\vec{h}} = \sum_{j=1}^{N} b_j e^{2\pi i (\vec{h} \cdot \vec{x}_j)}$

- Phasenproblem
- I ggf. zusätzlich magnetische Wechselwirkungen
- apparativ sehr aufwändig (Erzeugung und Detektion von n)
 - ▶ schwache WW \mapsto mehr Probe/größere Kristalle erforderlich
- nur verwendet, wenn Röntgen (Labor, Synchroton) 'nicht ausreicht'
 - 1. Unterscheidung von im PSE benachbarten Elementen
 - 2. Ermittlung der Positionen von Leichtatomen
 - 3. Bestimmung magnetischer Strukturen
- ▶ zusätzlich \mapsto inelastische Neutronenstreuung \mapsto s. IR/Raman

Neutronen

Eigenschaften Erzeugung Fokussierung, Monochromatisierung Detektion

Nukleare Streuung 0

Grundlagen Pulverbeugung Einkristallbeugung

Magnetische Streuung 2

Grundlagen magnetischer Strukturen Pulverbeugung Einkristallbeugung

Neutronen

Eigenschaften

Erzeugung Fokussierung, Monochromatisierung Detektion

Nukleare Streuung 0

Grundlagen Pulverbeugung Einkristallbeugung

Magnetische Streuung 2

Grundlagen magnetischer Strukturen Pulverbeugung Einkristallbeugung

Eigenschaften von Neutronen

	γ (Röntgen, X)	n (Neutronen)
Masse [kg]	0	$1.673 \cdot 10^{-27}$
magnetisches Moment	-	$\frac{1}{2}$
Energie [eV]	10 ³ bis 10 ⁶	10^{-3} bis 10^{0}
		0.025 (sog. thermisch n)
Wellenlänge λ [Å]	0.3 bis 3	0.3 bis 20
	1.5 (Cu-K $_{\alpha}$)	1.8 (thermische n)
Geschwindigkeit $v \text{ [m/s]}$	$c = 3 \cdot 10^8$	2 500 (thermische n)
Wechselwirkung mit	e ⁻ -Hülle	Kern/Isotop 0
	(Z-spezifisch)	e [−] -Spins ❷
Quellen	Röntgenröhre	Kernreaktor (I)
	Synchrotron	Spallationsquelle (II)

Neutronen

Eigenschaften

Erzeugung

Fokussierung, Monochromatisierung Detektion

Nukleare Streuung 0

Grundlagen Pulverbeugung Einkristallbeugung

Magnetische Streuung 2

Grundlagen magnetischer Strukturen Pulverbeugung Einkristallbeugung

Erzeugung I: Kernreaktionen

- 'gewöhnliche' Leicht- oder Schwerwasserreaktoren
- Brennstoff: UO₂ oder U-Silicide, angereichert auf ca. 93 % ²³⁵₉₂ U (HEU¹)
- Kernreaktionen mit 'langsamen' (0.025 eV) Neutronen²:

$$^{235}_{92}$$
U + $^{1}_{0}$ n \longrightarrow $^{236}_{92}$ U \longrightarrow X + Y + 3^{1}_{0} n

- Energie der gebildeten n: 2 000 000 eV (v = 20 000 km/s)
- 'schnelle' n werden von ²³⁸₉₂U absorbiert
- Abbremsen der n mit Moderatoren (inelastische Streuung) [Isotope: ¹H bzw. ²D (in Wasser), Graphit]
- Für Kettenreaktion \mapsto Multiplikationsfaktor $m = \frac{n_{gebildet}}{n_{verbraucht}} = 1$
- Regelstäbe (Absorption) (Isotope: ¹⁰B, Borcarbid, Cd, Gd, Sm, Eu, Y, Hf)

¹ HEU = highly enriched uranium; ² X/Y z.B. $\frac{144}{56}$ Ba/ $\frac{89}{36}$ Kr

Wirkungsquerschnitte für die Absorption

lsotop	σ in Barn	μ	bei Durchgang durch 1 cm
	$[10^{-24} cm^2]$	$[\mathrm{cm}^{-1}]$	Material verbleiben [%]
⁶ Li	570	26	0
¹⁰ B	430	56	0
С	0.003	0.0005	99.95
AI	0.13	0.008	99.2
Fe	1.4	0.12	88.7
¹¹³ Cd	23 000	1050	0
Gd	20 000	600	0
¹⁶⁰ Gd	1	0.03	97.0

- zum Vergleich: Röntgenstrahlung:
 - allgemein: $\mu = 100$ 4000 cm $^{-1}$
 - wichtiges Element mit kleinem μ : Be ($\mu = 2.7 \text{ cm}^{-1}$)

Kernreaktor FRM-II in Garching

Schema des FRM-II

Reaktorbecken

Bilder: www.frm2.tum.de

Kernreaktor FRM-II in Garching

Blick in das Reaktorbecken

Brennstab ⊘: 24 cm /: 130 cm

Strahlrohrausgang zur Experimentierhalle

Bilder: www.frm2.tum.de

FRM-II: Experimentierhalle

Neutronenbeugung	
Neutronen	
Erzeugung	

Erzeugung von Neutronen II: Spallationsquellen

- Beschuss eine Targets (U, Hg, Zr, W) mit hochenergetischen Teilchen (meist Protonen mit ca. 1 GeV, Protonenbeschleuniger)
 z.B. ²³⁸U-Target: ca. 25 n aller Energien (spektrale Verteilung s.u.)
- ▶ *n*-Pulse von 50-60 Hz.
- Filmchen vom ISIS
- Experimente mit Zeitauflösung (TOF, Time of Flight)

$$d_{hkl} = rac{\lambda}{2\sin\theta} = rac{h}{mv} rac{1}{2\sin\theta} = rac{ht_{hkl}}{mL} rac{1}{2\sin\theta}$$

t_{hkl}: 'Ankunftszeit' am Detektor

L: Abstand Quelle – Detektor

Neutronenbeugung
Neutronen
Erzeugung

Erzeugung von Neutronen II: Spallationsquellen

- Beschuss eine Targets (U, Hg, Zr, W) mit hochenergetischen Teilchen (meist Protonen mit ca. 1 GeV, Protonenbeschleuniger)
 z.B. ²³⁸U-Target: ca. 25 n aller Energien (spektrale Verteilung s.u.)
- ▶ *n*-Pulse von 50-60 Hz.
- ► Filmchen vom ISIS
- Experimente mit Zeitauflösung (TOF, Time of Flight)

$$d_{hkl} = \frac{\lambda}{2\sin\theta} = \frac{h}{mv} \frac{1}{2\sin\theta} = \frac{ht_{hkl}}{mL} \frac{1}{2\sin\theta}$$

t_{hkl}: 'Ankunftszeit' am Detektor

L: Abstand Quelle - Detektor

- Vorteile:
 - effiziente Ausnutzung aller Neutronen
 - sehr kleine und große Auflösungen möglich
 - fixer Aufbau von Detektoren und Probenumgebungen (Druckzellen, Magnete, Öfen, Reaktoren usw.)
 - flexibel, weiter optimierbar

Neutronenbeugung
Neutronen
Erzeugung

Erzeugung von Neutronen II: Spallationsquellen

- Beschuss eine Targets (U, Hg, Zr, W) mit hochenergetischen Teilchen (meist Protonen mit ca. 1 GeV, Protonenbeschleuniger)
 z.B. ²³⁸U-Target: ca. 25 n aller Energien (spektrale Verteilung s.u.)
- ▶ *n*-Pulse von 50-60 Hz.
- ► Filmchen vom ISIS
- Experimente mit Zeitauflösung (TOF, Time of Flight)

$$d_{hkl} = \frac{\lambda}{2\sin\theta} = \frac{h}{mv} \frac{1}{2\sin\theta} = \frac{ht_{hkl}}{mL} \frac{1}{2\sin\theta}$$

thkl: 'Ankunftszeit' am Detektor

L: Abstand Quelle - Detektor

- Vorteile:
 - effiziente Ausnutzung aller Neutronen
 - sehr kleine und große Auflösungen möglich
 - fixer Aufbau von Detektoren und Probenumgebungen (Druckzellen, Magnete, Öfen, Reaktoren usw.)
 - flexibel, weiter optimierbar

Neutronenbeugung
Neutronen
Erzeugung

Neutronenarten, typische Spektren, Einsatz

	T[K]	<i>E</i> [eV]	λ	<i>v</i> [m/s]	Verwendung
hochenergetisch		> 20 MeV			
Spalt-n		2 MeV			Materialtests, Tumortherapie
epitherm		10-100 eV			Boreinfangtherapie, Isotopenproduktion
heiss	2300	1-10 eV	0.05 nm	5 km/s	HL-Dotierung
thermisch	300	3-150 meV	0.2 nm	$2.2 \ \rm km/s$	Isotopenproduktion, NAA, Beugung
kalt	25	0.1-20 meV	0.2-25 nm	600 m/s	Neutronenoptik
ultra-kalt	mК	10^{-6} -0.01 meV	10-1000 nm	5 m/s	Messungen am n

Neutronenquellen weltweit

Reaktoren

- ► FRM-II, Garching, Deutschland, 20 MW
- ► BER-II (Helmholz-Zentrum Berlin) Berlin (ehem. HMI), 10 MW
- ▶ ILL (Institute Laue-Langevin), Grenoble, Frankreich
- ► LLB (Laboratoire Leon Brilloiun), Saclay, Frankreich, 14 MW
- div. kleinere Forschungsreaktoren

Spallationsquellen

- SINQ (Swiss Spallation Neutron Source), Paul-Scherrer-Institut, Villigen, CH
- ► ISIS (Intense Spallation Isotope Source), England
- LANSCE (Los Alamos Neutron Scattering Center), US
- KENS (Neutron Science Laboratory), Japan
- ESS (European Spallation Source Project) Lund, Schweden (im Bau)
- SNS (Spallation Neutron Source), Oak Ridge, US
- komplette Übersicht vom NIST

Neutronen

Eigenschaften Erzeugung Fokussierung, Monochromatisierung Detektion

Nukleare Streuung 0

Grundlagen Pulverbeugung Einkristallbeugung

Magnetische Streuung 2

Grundlagen magnetischer Strukturen Pulverbeugung Einkristallbeugung

Fokussierung/Kollimation: Neutronenleiter

- Prinzip: Totalreflexion
- kritische Winkel f
 ür thermische n ca. 2°
- 'Verlust' von schnellen n und γ-Strahlung
- Standard: sehr ebene Glasplatten mit
 ⁵⁸Ni-Beschichtung
- Superspiegel: 180 dünne Ni/Ti-Schichten

Bilder: www.frm2.tum.de

Monochromatisierung: Kristallmonochromator

Prinzip: Bragg

Positionen/Winkel in der Burg von aussen regelbar

▶ z.B. am SPODI: gebogene Ge(551)-Monochromatoren

- 37 mit Sn verlötete gebogene Ge-Wafer
- Gesamtdicke: 15 mm
- Streuwinkel 155°

Neutronen

Eigenschaften Erzeugung Fokussierung, Monochromatisierung Detektion

Nukleare Streuung 0

Grundlagen Pulverbeugung Einkristallbeugung

Magnetische Streuung 2

Grundlagen magnetischer Strukturen Pulverbeugung Einkristallbeugung

Neutronenbeugung
Neutronen
Detektion

Detektoren (allgemein)

 \blacktriangleright Absorption von ${}^1_0{\rm n}$ via Kernreaktion und Umwandlung in ${}^1_1{\rm p}$ oder $\alpha\text{-Teilchen}$

•
$${}_{0}^{1}n + {}_{2}^{3}He \longrightarrow {}_{1}^{1}p + {}_{1}^{3}T + 0.77 \text{ MeV}$$

$$\overset{1}{}_{0}n + \overset{6}{}_{3}Li \longrightarrow \overset{1}{}_{1}p + \overset{4}{}_{2}He + 4.78 \text{ MeV}$$

- ${}^{1}_{0}n + {}^{10}_{5}B \longrightarrow {}^{7}_{3}Li^{*} + {}^{4}_{2}He + 2.31 \text{ MeV}$
- Absorber-Materialien
 - ZnS-Pulver, gemischt mit B₂O₃ (¹⁰B angereichert)
 - BF₃-Zählrohre
 - ⁶Li angereicherte Gläser
 - ³He-Gasdetektoren
- erzeugte p oder ⁴He
 - Ionisation div. Detektormaterialien (z.B. Gase)
 - Fluoreszenz-Strahlung
 - Detektor entsprechend Röntgen-Detektoren
- Bauarten analog Röntgen
 - Einzelzähler
 - PSD, Flächenzähler
- Filmchen vom ISIS

Detektor: Polaris (am ISIS)

Bilder: www.isis.stfc.ac.uk

Abschirmung, Primärstrahlfänger

- > Abschirmsteine, verschiedene Betonsorten unterschiedlicher Dichte
- Primärstrahlfänger
 - z.B. ISIS: ¹⁰B-angereicherte B-Carbid + 80 t Abschirmmasse (Beton, Blei usw.)

Neutronen

Eigenschaften Erzeugung Fokussierung, Monochromatisierung Detektion

Nukleare Streuung 0

Grundlagen Pulverbeugung Einkristallbeugung

Magnetische Streuung 2

Grundlagen magnetischer Strukturen Pulverbeugung Einkristallbeugung

Neutronen

Eigenschaften Erzeugung Fokussierung, Monochromatisierung Detektion

Nukleare Streuung 0

Grundlagen

Pulverbeugung Einkristallbeugung

Magnetische Streuung 2

Grundlagen magnetischer Strukturen Pulverbeugung Einkristallbeugung

Wechselwirkung von n mit Atom-Kernen (nukleare Streuung)

- starke WW mit praktisch punktförmigen Kernen
- ▶ statt Streufaktorkurven f_j bei Röntgen \mapsto Streulänge b_j , von θ unabhängig

Unterschiede in Streulängen

- keine Gänge mit Z
- Isotopenabhängigkeit
- b auch negativ oder komplex

Wechselwirkung von n mit Atom-Kernen (nukleare Streuung)

- starke WW mit praktisch punktförmigen Kernen
- ▶ statt Streufaktorkurven f_j bei Röntgen \mapsto Streulänge b_j , von θ unabhängig

- b auch negativ oder komplex
- ▶ inkohärente Streuung z.B. bei ¹H → hoher Untergrund
- ▶ hohe Absorption: ¹⁰B, Cd, Eu, Gd

Wechselwirkung von n mit Atom-Kernen (nukleare Streuung)

- starke WW mit praktisch punktförmigen Kernen
- ▶ statt Streufaktorkurven f_j bei Röntgen \mapsto Streulänge b_j , von θ unabhängig

- Unterschiede in Streulängen
 - keine Gänge mit Z
 - Isotopenabhängigkeit
 - b auch negativ oder komplex
- ▶ inkohärente Streuung z.B. bei ${}^{1}H \mapsto$ hoher Untergrund
- ▶ hohe Absorption: ¹⁰B, Cd, Eu, Gd

Ausgewählte kohärente Streulängen

Isotop	<i>b</i> [10 ⁻¹² cm]
^{1}H	-0.374
² D	0.667
0	0.58
Ti	-0.34
⁴⁶ Ti	0.48
⁴⁷ Ti	0.33
⁴⁸ Ti	-0.58
⁴⁹ Ti	0.08
¹¹³ Cd	-1.5 + 1.2i
¹⁶⁰ Gd	0.03

Elastische Streuung am Kristall

analog zur Röntgenbeugung

$$F_{hkl} = \sum_{Atomej} f_j e^{2\pi i (hx_j + ky_j + lz_j)}$$

▶ für *n*:

$$F_{hkl} = \sum_{Atomej} b_j e^{2\pi i (hx_j + ky_j + lz_j)}$$

damit z.B. Reflexintensitäten in Pulverdiffraktogrammen:

$$I_{hkl} = \mid F_{hkl} \mid^2 H_{hkl} LPA$$

 Strukturverfeinerungen (z.B. Rietveld-Methode) direkt analog zur Röntgenbeugung

Neutronen

Eigenschaften Erzeugung Fokussierung, Monochromatisierung Detektion

Nukleare Streuung 0

Grundlagen

Pulverbeugung

Einkristallbeugung

Magnetische Streuung 2

Grundlagen magnetischer Strukturen Pulverbeugung Einkristallbeugung

Pulverdiffraktometer SPODI am FRM-II

- SPODI = Structure POwder DIffractometer
- Monochromator: Ge (551) Wafer
 Optimierung auf Fluss oder Monochromatisierung durch unterschiedliche Monochromatorwinkel
- Proben-Kollimator: planparallele Platten
- ³He-Detektorbank
- 80 Detektoren: Draht, 300 mm vertikaler Detektor
- Gauss-Profile

Pulverdiffraktometer D20 am ILL/Grenoble

- besonders hohe Flussdichte
- Gesamtflächendetektor (PSD), dadurch sehr schnell

Gesamtansicht

Detektor

schematischer Aufbau

Bilder: www.ill.eu (sehr schöne Guided-Tours)

- grundlegende Vorteile von Neutronen (gegenüber Röntgen)
 - Bestimmung der Positionen von Leichtatomen (H, D usw.)
 - Trennung quasi-isoelektronischer Elemente (Fe Co, Al Si usw.)
 - Bestimmung magnetischer Strukturen
- weitere Vorteile von Neutronen
 - aufwändige Probenumgebungen möglich (kaum Absorption)
 (*T* und *p*-abhängige Messungen, magnetische Felder, in-situ-Untersuchungen usw.)
 - einfachere Analyse thermischer Bewegungen (keine Abhängigkeit von Bindungselektronen usw.)
 - zeitaufgelöste Messungen

- grundlegende Vorteile von Neutronen (gegenüber Röntgen)
 - Bestimmung der Positionen von Leichtatomen (H, D usw.)
 - Trennung quasi-isoelektronischer Elemente (Fe Co, Al Si usw.)
 - Bestimmung magnetischer Strukturen
- weitere Vorteile von Neutronen
 - aufwändige Probenumgebungen möglich (kaum Absorption)
 (*T* und *p*-abhängige Messungen, magnetische Felder, in-situ-Untersuchungen usw.)
 - einfachere Analyse thermischer Bewegungen (keine Abhängigkeit von Bindungselektronen usw.)
 - zeitaufgelöste Messungen
- generelle Vorteile der Pulverdiffraktometrie
 - Pulverproben ausreichend
 - $\blacktriangleright \ \ {\sf Reflex-Profile} \mapsto {\sf Informationen} \ \ {\sf zur} \ \ {\sf Teilchengrößenverteilung}, \ \ {\sf Textur}, \ \ {\sf Stress},$

- - -

- grundlegende Vorteile von Neutronen (gegenüber Röntgen)
 - Bestimmung der Positionen von Leichtatomen (H, D usw.)
 - Trennung quasi-isoelektronischer Elemente (Fe Co, Al Si usw.)
 - Bestimmung magnetischer Strukturen

weitere Vorteile von Neutronen

- aufwändige Probenumgebungen möglich (kaum Absorption)
 (*T* und *p*-abhängige Messungen, magnetische Felder, in-situ-Untersuchungen usw.)
- einfachere Analyse thermischer Bewegungen (keine Abhängigkeit von Bindungselektronen usw.)
- zeitaufgelöste Messungen

generelle Vorteile der Pulverdiffraktometrie

- Pulverproben ausreichend
- ▶ Reflex-Profile \mapsto Informationen zur Teilchengrößenverteilung, Textur, Stress,

...

generelle Nachteile der Pulverdiffraktometrie

- begrenzte Strukturinformationen durch 1D Daten
- Strukturbestimmung sehr schwierig
- keine vollständigen Magnetstrukturen

- grundlegende Vorteile von Neutronen (gegenüber Röntgen)
 - Bestimmung der Positionen von Leichtatomen (H, D usw.)
 - Trennung quasi-isoelektronischer Elemente (Fe Co, Al Si usw.)
 - Bestimmung magnetischer Strukturen
- weitere Vorteile von Neutronen
 - aufwändige Probenumgebungen möglich (kaum Absorption)
 (*T* und *p*-abhängige Messungen, magnetische Felder, in-situ-Untersuchungen usw.)
 - einfachere Analyse thermischer Bewegungen (keine Abhängigkeit von Bindungselektronen usw.)
 - zeitaufgelöste Messungen
- generelle Vorteile der Pulverdiffraktometrie
 - Pulverproben ausreichend
 - $\blacktriangleright \ \ \mathsf{Reflex-Profile} \mapsto \mathsf{Informationen} \ \ \mathsf{zur} \ \mathsf{Teilchengrößenverteilung}, \ \ \mathsf{Textur}, \ \mathsf{Stress},$
- generelle Nachteile der Pulverdiffraktometrie
 - begrenzte Strukturinformationen durch 1D Daten
 - Strukturbestimmung sehr schwierig
 - keine vollständigen Magnetstrukturen

Lokalisierung von Leichtatomen I: historisches Beispiel

(Projektion auf (001))

Überstruktur von CaF₂ (gelb)

14/mmm; a=410, c=503 pm

R. E. Rundle, C. G. Shull, E. O. Wollan, Acta Crystallogr. 5, 22-26 (1952).

- Ba₁₀Ga^[1], auch Ba₁₀Si usw. (VAl₁₀-Typ)
- ► $Ba_{21}Si_2O_5^{[2]} \longrightarrow 21Ba^{2+} + 2Si^{4-} + 5O^{2-} + 24e^{-}$

M. L. Fornasini, F. Merlo, Rev. Chim. Mineral. 16, 458-464 (1979);
 C. Röhr, Z. Anorg. Allg. Chem. 621, 1496-1500 (1995).
 B. Huang, J. D. Corbett, Inorg. Chem. 37, 1892-1899 (1998).

- Ba₁₀Ga^[1], auch Ba₁₀Si usw. (VAl₁₀-Typ)
- ► $Ba_{21}Si_2O_5^{[2]} \longrightarrow 21Ba^{2+} + 2Si^{4-} + 5O^{2-} + 24e^{-}$
- ► $Ba_{21}Si_2O_5H_{24}^{[3]} \longrightarrow 21Ba^{2+} + 2Si^{4-} + 5O^{2-} + 24H^{-}$

M. L. Fornasini, F. Merlo, Rev. Chim. Mineral. 16, 458-464 (1979);
 C. Röhr, Z. Anorg. Allg. Chem. 621, 1496-1500 (1995).
 B. Huang, J. D. Corbett, Inorg. Chem. 37, 1892-1899 (1998).

- Ba₁₀Ga^[1], auch Ba₁₀Si usw. (VAI₁₀-Typ)
- $\blacktriangleright \text{ Ba}_{21}\text{Si}_2\text{O}_5^{[2]} \longrightarrow 21\text{Ba}^{2+} + 2\text{Si}^{4-} + 5\text{O}^{2-} + 24\text{e}^{-}$
- $\blacktriangleright \operatorname{Ba}_{21}\operatorname{Si}_2\operatorname{O}_5\operatorname{H}_{24}^{[3]} \longrightarrow 21\operatorname{Ba}^{2+} + 2\operatorname{Si}^{4-} + 5\operatorname{O}^{2-} + 24\operatorname{H}^{-}$
- ▶ ?? Ort und Anzahl von Hydrid-Ionen in $Ba_{21}Si_2O_5(H/D)_x(x=?)$

M. L. Fornasini, F. Merlo, Rev. Chim. Mineral. 16, 458-464 (1979);
 C. Röhr, Z. Anorg. Allg. Chem. 621, 1496-1500 (1995).
 B. Huang, J. D. Corbett, Inorg. Chem. 37, 1892-1899 (1998).

- Ba₁₀Ga^[1], auch Ba₁₀Si usw. (VAI₁₀-Typ)
- $\blacktriangleright \ \mathsf{Ba}_{21}\mathsf{Si}_2\mathsf{O}_5^{[2]} \longrightarrow 21\mathsf{Ba}^{2+} + 2\mathsf{Si}^{4-} + 5\mathsf{O}^{2-} + 24\mathsf{e}^{-}$
- $\blacktriangleright \text{ Ba}_{21}\text{Si}_2\text{O}_5\text{H}_{24}^{[3]} \longrightarrow 21\text{Ba}^{2+} + 2\text{Si}^{4-} + 5\text{O}^{2-} + 24\text{H}^{-}$
- > ?? Ort und Anzahl von Hydrid-Ionen in $Ba_{21}Si_2O_5(H/D)_x(x=?)$
- Synthese phasenreiner Proben der H- und der D-Verbindungen (mehrere 100 mg)
- Pulvermessung der H- und D-Probe (Holger Kohlmann, Leipzig)
- Diffraktometer: Pulverdiffraktometer D20, ILL Grenoble
- Rietveldverfeinerung

M. L. Fornasini, F. Merlo, Rev. Chim. Mineral. 16, 458-464 (1979);
 C. Röhr, Z. Anorg. Allg. Chem. 621, 1496-1500 (1995).
 B. Huang, J. D. Corbett, Inorg. Chem. 37, 1892-1899 (1998).

- Ba₁₀Ga^[1], auch Ba₁₀Si usw. (VAI₁₀-Typ)
- $\blacktriangleright \ \mathsf{Ba}_{21}\mathsf{Si}_2\mathsf{O}_5^{[2]} \longrightarrow 21\mathsf{Ba}^{2+} + 2\mathsf{Si}^{4-} + 5\mathsf{O}^{2-} + 24\mathsf{e}^{-}$
- $\blacktriangleright \text{ Ba}_{21}\text{Si}_2\text{O}_5\text{H}_{24}^{[3]} \longrightarrow 21\text{Ba}^{2+} + 2\text{Si}^{4-} + 5\text{O}^{2-} + 24\text{H}^{-}$
- > ?? Ort und Anzahl von Hydrid-Ionen in $Ba_{21}Si_2O_5(H/D)_x(x=?)$
- Synthese phasenreiner Proben der H- und der D-Verbindungen (mehrere 100 mg)
- Pulvermessung der H- und D-Probe (Holger Kohlmann, Leipzig)
- Diffraktometer: Pulverdiffraktometer D20, ILL Grenoble
- Rietveldverfeinerung

M. L. Fornasini, F. Merlo, Rev. Chim. Mineral. 16, 458-464 (1979);
 C. Röhr, Z. Anorg. Allg. Chem. 621, 1496-1500 (1995).
 B. Huang, J. D. Corbett, Inorg. Chem. 37, 1892-1899 (1998).

¹: M. Jehle, A. Hoffmann, H. Kohlmann, H. Scherer, C. Röhr, J. Alloys Compds 623 164-177 (2015).

Lokalisierung von Leichtatomen II: Ba₂₁Si₂O₅H_x

Crystal system, Space group		cubic, <i>Fd</i> 3 <i>m</i> , No. 227
Lattice constant [pm]	а	2038.99(3)
Volume of the u.c. [10 ⁶ pm ³]		8477.2(4)
Ζ		8
Density [g/cm ³]		4.760
Diffractometer		D20, ILL Grenoble, $\lambda=$ 186.707(2) pm
2 θ range [°]		3 - 150
No. of data points/reflections observed		1381/289
Refinement		Gsas, Expgui
No. of free parameters		58 (6 profile and 32 background param.)
<i>R</i> -Values		$R_p = 0.0271; wR_p = 0.0389, R(F^2) = 0.0984$
$Ba(1) (8b: \frac{3}{8}, \frac{3}{8}, \frac{3}{8})$	U _{iso} =	154(35)
D (96g: x,x,z)	x =	0.4314(2)
	<i>z</i> =	0.6298(3)
	$U_{iso} =$	330(10)
	sof =	0.725(6)

Lokalisierung von Leichtatomen II: Ba₂₁Si₂O₅H_x

Lokalisierung von Leichtatomen II: Ba₂₁Si₂O₅H_x

¹: M. Jehle, A. Hoffmann, H. Kohlmann, H. Scherer, C. Röhr, J. Alloys Compds 623 164-177 (2015).

Einleitung

Neutronen

Eigenschaften Erzeugung Fokussierung, Monochromatisierung Detektion

Nukleare Streuung 0

Grundlagen Pulverbeugung Einkristallbeugung

Magnetische Streuung 2

Grundlagen magnetischer Strukturen Pulverbeugung Einkristallbeugung

Literatur, Links

Einkristallbeugung

Vorteile gegenüber Pulver

- komplette Strukturinformationen zugänglich (Strukturlösung einfach)
- 3D-aufgelöste I-Informationen
- vollständige Magnetstruktur
- anisotrope Temperaturfaktoren
- Nachteile gegenüber Pulver
 - große Kristalle erforderlich (ca. 1 mm Kantenlänge)
 - sehr aufwändige Messungen

Einkristalldiffraktometer I

Standarddiffraktometer, z.B. mit Eulerwiege (HEIDI am FRM-II)

Einkristalldiffraktometer II

κ-Geometrie, mit Flächenzähler (RESI am FRM-II)

Einkristalldiffraktometer III

► Lifting-Counter-Zähler, erlaubt aufwändige Probenumgebungen (ILL)

Einleitung

Neutronen

Eigenschaften Erzeugung Fokussierung, Monochromatisierung Detektion

Nukleare Streuung 0

Grundlagen Pulverbeugung Einkristallbeugung

Magnetische Streuung 2

Grundlagen magnetischer Strukturen Pulverbeugung Einkristallbeugung

Literatur, Links

Einleitung

Neutronen

Eigenschaften Erzeugung Fokussierung, Monochromatisierung Detektion

Nukleare Streuung 0

Grundlagen Pulverbeugung Einkristallbeugung

Magnetische Streuung 2

Grundlagen magnetischer Strukturen

Pulverbeugung Einkristallbeugung

Literatur, Links

Wechselwirkung der Neutronen mit der Elektronenhülle

- ▶ $n \mapsto Spin \frac{1}{2}$
- magnetisches Moment

$$\mu_n = \frac{e\hbar}{2m_n} g_n \quad (\text{mit } g_n = 1.913)$$

▶ Vergleich mit *e*[−]

$$\mu_e = \frac{e\hbar}{2m_e} g_e \quad (\text{mit } g_e = 2)$$

- WW mit dem Magnetfeld, das durch Spin- und Orbital-Momente der e⁻ der Atomhülle erzeugt wird (bei 3d-Metallen, Lanthanoiden usw.)
- ▶ e^{-} -Hülle nicht punktförmig $\mapsto \theta$ -Abhängigkeit wie bei Röntgenbeugung:

Beschreibung von Magnetstrukturen

- 3-dimensionale Ordnung von magnetischen Momenten unterhalb einer Ordnungstemperatur T_o
- magnetische WW J_{ij} ($E = -J_{ij}S_iS_j$)
- 1. kristallographische Beschreibung
 - 1421 magnetische Raumgruppen (Shubnikov-Gruppen)
 - s. G. T. Rado, H. Suhl, Magnetic Symmetry Vol. II A, Academic Press New York, 1963.

2. alternative Beschreibung: Propagationsvektor \vec{k} (im reziproken, s.u.) (*q*-Vektor der Magnetstruktur)

1D Ferromagnet

ferromagnetisch

$$\vec{k_N} = \frac{2\pi}{\vec{a}} n$$

$$\vec{k_M} = \frac{2\pi}{\vec{a}} n$$

- → magnetische Bragg-Reflexe an den gleichen Positionen wie die Kern-Reflexe
- gegenüber reiner Kernstreuung θ-Abhängigkeit

1D Antiferromagnet

antiferromagnetisch

•
$$\vec{k_N} = \frac{2\pi}{\vec{a}} n$$

$$\vec{k_M} = \frac{2\pi}{2\vec{a}} n = \frac{\pi}{\vec{a}} n = \frac{1}{2} \vec{k_N}$$

- ► → magnetische Bragg-Reflexe zwischen den Kern-Reflexe
- ▶ magnetische Überstruktur

Propagationsvektor: Definition

- Ψ_j: magnetisches Moment eines Atoms j in der 0. Elementarzelle der Kernstruktur
- Def: Das magnetisches Moment μ_{jl} der gleichen Atomsorte j in einer Elementarzelle l mit dem Gittervektor t_l = ua + vb
- ► soll sich nach $\mu_{jl} = \Psi_j e^{-2\pi i \vec{k} \vec{t}}$ ergeben.
- 2D Beispiel (s. rechts)
 - $\Psi_j = [10]$ (Pfeil in \vec{a} -Richtung)
 - $\vec{k} = (\frac{1}{2}, \frac{1}{2})$.. da ..
 - ► z.B. für das Atom am Ende des blauen Pfeils: $\mu_{jl} = \Psi_j e^{-2\pi i \vec{k} \cdot \vec{t}}$
 - $= \Psi_j exp\{-2\pi i(\frac{1}{2},\frac{1}{2})\binom{1}{2}\} \\ = \Psi_j exp\{-2\pi i(\frac{1}{2}+1)\} = \Psi_j e^{-3\pi i} = -\Psi_j$
 - grüne Zahlen: Vorzeichen $e^{-2\pi i \vec{k} \vec{t}}$ von μ_j
 - grüne 'Ebenen' mit jeweils parallelen Spins
 - verlaufen \perp zu \vec{k}

Propagationsvektor in der Beugung

- $ightarrow \vec{k}$ beschreibt Translationssymmetrie der Magnetstruktur (relativ zur Kernstruktur)
- kristallographisch: k
 transformiert die reziproken Basisvektoren der

 Kernstruktur in die reziproken Basisvektoren des magnetischen Übergitters
- für Beugung an Kernen:
 - reale Basis der Kern-Elementarzelle: \vec{a} , \vec{b} , \vec{c}
 - ▶ zugehörige reziproke Zelle: $\vec{a^*}$, $\vec{b^*}$, $\vec{c^*}$
 - ► → Kern-Braggreflexe *hkl* an den Orten $\vec{h} = h\vec{a^*} + k\vec{b^*} + l\vec{c^*}$
 - ▶ *h*, *k*, *I*: Millerindizes, geradzahlig

Propagationsvektor in der Beugung

- $ightarrow \vec{k}$ beschreibt Translationssymmetrie der Magnetstruktur (relativ zur Kernstruktur)
- kristallographisch: k
 transformiert die reziproken Basisvektoren der Kernstruktur in die reziproken Basisvektoren des magnetischen Übergitters
- ▶ für Beugung an Kernen:
 - reale Basis der Kern-Elementarzelle: \vec{a} , \vec{b} , \vec{c}
 - zugehörige reziproke Zelle: $\vec{a*}$, $\vec{b*}$, $\vec{c*}$
 - \mapsto Kern-Braggreflexe *hkl* an den Orten $\vec{h} = h\vec{a^*} + k\vec{b^*} + l\vec{c^*}$
 - h, k, I: Millerindizes, geradzahlig
- für magnetische Struktur:
 - Propagationsvektor \vec{k} : $\vec{k} = k_x \vec{a^*} + k_y \vec{b^*} + k_z \vec{c^*}$
 - \blacktriangleright k_x , k_y , k_z zwischen 0 und 1
 - magnetische Reflexe an den reziproken Orten: $\vec{H} = \vec{h} + \vec{k}$
 - Magnetreflexe sind Satelliten der Kernreflexe

Propagationsvektor in der Beugung

- $ightarrow \vec{k}$ beschreibt Translationssymmetrie der Magnetstruktur (relativ zur Kernstruktur)
- kristallographisch: k
 transformiert die reziproken Basisvektoren der

 Kernstruktur in die reziproken Basisvektoren des magnetischen Übergitters
- ▶ für Beugung an Kernen:
 - reale Basis der Kern-Elementarzelle: \vec{a} , \vec{b} , \vec{c}
 - > zugehörige reziproke Zelle: $\vec{a^*}$, $\vec{b^*}$, $\vec{c^*}$
 - \mapsto Kern-Braggreflexe *hkl* an den Orten $\vec{h} = h\vec{a^*} + k\vec{b^*} + l\vec{c^*}$
 - h, k, I: Millerindizes, geradzahlig
- für magnetische Struktur:
 - Propagationsvektor \vec{k} : $\vec{k} = k_x \vec{a^*} + k_y \vec{b^*} + k_z \vec{c^*}$
 - k_x , k_y , k_z zwischen 0 und 1
 - magnetische Reflexe an den reziproken Orten: $\vec{H} = \vec{h} + \vec{k}$
 - Magnetreflexe sind Satelliten der Kernreflexe

Bragg'sche Gleichung

$$\frac{1}{d_{\vec{h}}} = |\vec{h}| = \frac{2 \sin \theta}{\lambda}$$

Kernreflexe \vec{h} = Fundamentalreflexe
Bragg'sche Gleichung für die magnetischen
Reflexe

$$(\frac{1}{d_{\vec{H}}})^{\pm} = |\vec{H}| = |\vec{h} \pm \vec{k}| = \frac{2\sin(\theta^{\pm})}{\lambda}$$

Magnetstrukturen im reziproken Raum

Einleitung

Neutronen

Eigenschaften Erzeugung Fokussierung, Monochromatisierung Detektion

Nukleare Streuung 0

Grundlagen Pulverbeugung Einkristallbeugung

Magnetische Streuung 2

Grundlagen magnetischer Strukturen Pulverbeugung Einkristallbeugung

Literatur, Links

Auswirkungen auf Pulverdiffraktogramme

▶ ferromagnetische Ordnung in TbNi₁₀Si₂ (!! TOF: $d \propto \frac{1}{sin\Theta}$)

Auswirkungen auf Pulverdiffraktogramme

▶ ferromagnetische Ordnung in TbNi₁₀Si₂ (!! TOF: $d \propto \frac{1}{sin\Theta}$)

Auswirkungen auf Pulverdiffraktogramme

▶ ferromagnetische Ordnung in TbNi₁₀Si₂ (!! TOF: $d \propto \frac{1}{sin\Theta}$)

Auswirkungen auf Pulverdiffraktogramme

mit sinusförmiger Spinänderung (k=0,0,0.02)

Antiferromagnetische Ordnung: Beispiel MnO

Intensität des magnetischen (111)-Reflexes

Magnetstrukturen von Sulfido-Ferraten

z. B. für $\mathsf{KFe}^{\mathsf{III}}\mathsf{S}_2$ * aus $\mathit{n}\text{-}\mathsf{Pulveruntersuchungen}^*$ bekannt \bullet

• $T_N = 251 \text{ K}$ • Raumgruppe: C2'/c• $\mu_B = 2.29(5)$ • Kippwinkel gegen c: 13.6°

^{*:} M. Nishi, Y. Ito, Solid State Comm. 30, 571-574 (1979).

Einleitung

Neutronen

Eigenschaften Erzeugung Fokussierung, Monochromatisierung Detektion

Nukleare Streuung 0

Grundlagen Pulverbeugung Einkristallbeugung

Magnetische Streuung 2

Grundlagen magnetischer Strukturen Pulverbeugung Einkristallbeugung

Literatur, Links

Vollständige Magnetstruktur

Parameter einer Magnetstruktur

- 1. Typ der magnetischen Wechselwirkung (FM, AFM,...) bzw. k
- 2. Größe der magnetischen Momente
- 3. Richtung der magnetischen Momente
 - in der Beugung 'sichtbare' magnetische Momente
 - nur der in der Netzebene von h liegende Anteil

Unterscheidung in magnetische – Kern-Streuung

- magnetische Formfaktoren nehmen mit Streuwinkel ab
- Intensität magnetischer Reflexe fällt bei Annäherung an die kritische Temperatur
- Unterschiede bei der Streuung mit polarisierten Neutronen

Magnetstrukturen aus Pulvern/Einkristallen

aus Pulverdaten

- 1. Verfeinerung der reinen Kernstruktur (oberhalb T_c gemessen)
- 2. Messung der Magnetstruktur unterhalb T_c
- 3. Identifizierung der Magnetreflexe (z.B. Differenzbildung)
- 4. Indizierung der Magnetreflexe \mapsto Propagationsvektor
- 5. Entwicklung eines Modells für den Magnetismus
 - (z.B. Auslöschungsbedingungen der Magnetreflexe)
- 6. Verfeinerung des Modells (JANA, GSAS, FULLPROF), entweder
 - ... im magnetischen Übergitter (magn. Raumgruppe)
 - ... in höheren Dimensionen, wobei jeder Propagationsvektor k eine weitere Dimension erzeugt

aus Einkristalldaten

- ► direkte Messung aller Daten (inkl. k) möglich Satelliten → Flächenzähler
- Intensitäten aller Reflexe (auch der Satelliten)
- Strukturlösung möglich
- Verfeinerung wie bei Pulvern, zusätzlich μ als Vektor
- gerichtete externe magnetische Felder möglich

Magnetstrukturen aus Pulvern/Einkristallen

aus Pulverdaten

- 1. Verfeinerung der reinen Kernstruktur (oberhalb T_c gemessen)
- 2. Messung der Magnetstruktur unterhalb T_c
- 3. Identifizierung der Magnetreflexe (z.B. Differenzbildung)
- 4. Indizierung der Magnetreflexe \mapsto Propagationsvektor
- 5. Entwicklung eines Modells für den Magnetismus
 - (z.B. Auslöschungsbedingungen der Magnetreflexe)
- 6. Verfeinerung des Modells (JANA, GSAS, FULLPROF), entweder
 - ... im magnetischen Übergitter (magn. Raumgruppe)
 - ... in höheren Dimensionen, wobei jeder Propagationsvektor k eine weitere Dimension erzeugt

aus Einkristalldaten

- direkte Messung aller Daten (inkl. k) möglich
 Satelliten → Flächenzähler
- Intensitäten aller Reflexe (auch der Satelliten)
- Strukturlösung möglich
- ▶ Verfeinerung wie bei Pulvern, zusätzlich μ als Vektor
- gerichtete externe magnetische Felder möglich

Literatur und Links

- M. Mewen, R. Gilles, M. Braden usw.: Unterlagen zum DGK-Workshop, Salzburg (2011).
- C. Giacovazzo (Ed.): Fundamentals of Crystallography, Oxford University Press (2011).
- ▶ H. Weitzel: Skript zur Vorlesung Neutronenbeugung, TH Darmstadt, 1984.
- E. C. Bacon: Neutron Diffraction, Clarendon Press, 1975.
- ▶ Web-Seiten von FRM-II, ILL, SINQ, ISIS, PSI usw. (s.o.)