## 1. Einleitung

#### 1.2. Generelles zur Projektierung chemischer Anlagen

Vorlesung: Technische Anorganische Chemie



SS 2018, Caroline Röhr

1. Einleitung

#### 1.1. Bedeutung anorganisch-technischer Prozesse

#### 1.2. Generelles zur Projektierung chemischer Anlagen

Wirtschaftliche/technische/chemische Aspekte
Rohstoffe: Vorkommen, Förderung und Aufarbeitung
Stofftrennung
Mechanische Stofftrennung
Thermische Stofftrennung
Stoffumwandlungen

#### 1.2. Generelles zur Projektierung chemischer Anlager

Wirtschaftliche/technische/chemische Aspekte
Rohstoffe: Vorkommen, Förderung und Aufarbeitung
Stofftrennung
Mechanische Stofftrennung
Thermische Stofftrennung
Stoffumwandlungen

# 1.2. Generelles zur Projektierung chemischer Anlagen Wirtschaftliche/technische/chemische Aspekte

Rohstoffe: Vorkommen, Förderung und Aufarbeitung

Mechanische Stofftrennung Thermische Stofftrennung

Stoffumwandlungen

### Wirtschaftliche/technische/chemische Aspekte der Projektierung

- Wirtschaftliches
  - Kosten-Nutzen-Analyse, Gesamtkosten, Rentabilität
  - Patentlage, Genehmigungen (Umweltauflagen)
  - Verfügbarkeit der Rohstoffe und Betriebsmittel
  - Marktlage, Absatz
  - Anlagenstandort, Verkehrswege, Personal
- Prozeßtechnisches für die Projektierung (Verfahrensauswahl, Kosten)
  - ► Energie/Impuls/Stoff-Bilanzen (Kreisläufe!)
  - Rohstoffe (Verfügbarkeit, Aufarbeitung)
  - Betriebsmittel (Energie: Wärme, Kälte, Strom; Wasser; Gase)
  - ▶ Umweltverträglichkeit (Emissionen, Wasser- und Luft-Reinhaltung, ...)
- ► Technische/chemische Teilschritte
  - 1. Rohstoff-Förderung, Transport, Vorbereitung und Lagerung
  - 2. ev. Stofftrennungen vorab<sup>1</sup>
  - 3. Stoffumwandlungen (chem. Reaktionstechnik)<sup>2</sup>
    - ► Energie/Impuls/Stoff-Bilanzen
    - Reaktoren: Bedingungen (T, P, Atmosphäre, pH, Katalysatoren, Materialien etc.)
  - 4. ggf. weitere nachgeschaltete Stofftrennungen<sup>1</sup>
  - 5. Lagerung, Transport und Weiterverwertung des Endproduktes

<sup>1, 2:</sup> in dieser Vorlesung

#### 1.2. Generelles zur Projektierung chemischer Anlagen

Wirtschaftliche/technische/chemische Aspekte

Rohstoffe: Vorkommen, Förderung und Aufarbeitung

Stofftrennung
Mechanische Stofftrennung
Thermische Stofftrennung
Stoffumwandlungen

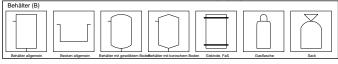
#### Rohstoffe

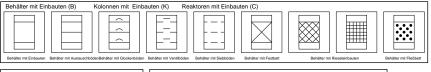
#### Rohstoffe sind ....

- ▶ OC ... praktisch nur Erdöl (I)
  - einfache und einheitliche Vorbereitung/Aufarbeitung (Rektifikation)
- ► AC ... i.A. Feststoffe (s)
  - bergmännischer Abbau
    - Übertage
    - Untertage
  - seltener speziellere Abbau/Förder-Verfahren
    - Aussolung (für lösliche Stoffe wie z.B. NaCl, KCl)
    - Schmelze (z.B. Schwefel nach Frash-Verfahren)
  - ► Erfordern häufig spezielle Vorbereitung/Aufarbeitung ↓

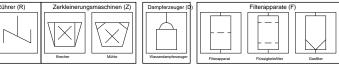
### Zerkleinern, Agglomerieren, Klassieren, Fördern und Lagern

- 1. Zerkleinern
  - Ziele:
    - Erzeugen günstiger Korngrößenverteilungen (auch für Handel)
    - Oberflächenvergrößerungen (für Weiterverarbeitung)
    - ► Aufschluß der Wertstoffe
  - ► Apparate: Brech- und Mahlanlagen (Z¹)
    - Backen-, Walzen-, Kegel-Brecher usw.
    - Prall-, Kugel-, Schüssel-Mühle usw.
  - ▶ Betrieb: meist mehrstufige Zerkleinerung mit Zwischentrennung
- 2. Agglomeration (Kornvergröberung)
  - ► Ziele: hohe Schüttdichte, Optimierung der Fließeigenschaften
  - Verfahren:
    - Pelletieren
    - Brikettieren und Tablettieren (Preßagglomeration)
  - Sintern
- 3. Klassierung
  - ▶ Ziel: Auftrennung in Korngrößenbereiche
  - Verfahren:
    - ► Siebklassierung: Roste und Siebe (F¹)
    - ► Stromklassierung: Schwerkraft- oder Zentrifugalklassierung (nass), Windsichtung
- 4. Förderung und Lagerung von Feststoffen (B, H<sup>1</sup>)

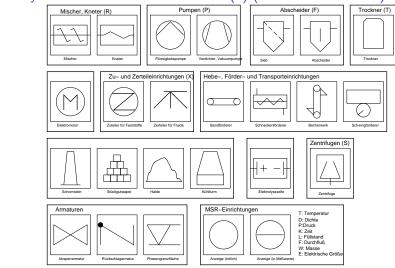

<sup>1:</sup> Kennbuchstabe


### Kennbuchstaben für Apparaturen und Armaturen (nach DIN 28004)

| Apparate, Maschinen und Geräte |                                                            | Armaturen |                                 |
|--------------------------------|------------------------------------------------------------|-----------|---------------------------------|
| KBS                            | Benennung                                                  | KBS       | Benennung                       |
| Α                              | Apparate, Maschinen, soweit nicht in eine der nach-        | Α         | Ableiter (Kondensatableiter)    |
|                                | stehenden Gruppen einzuordnen                              |           |                                 |
| В                              | Behälter, Tank, Bunker, Silo                               | F         | Filter, Sieb, Schmutzfänger     |
| C                              | Chemischer Reaktor                                         | G         | Schauglas                       |
| D                              | Dampferzeuger, Gasgenerator, Ofen                          | Н         | Hahn                            |
| F                              | Filterapparat, Flüssigkeitsfilter, Gasfilter, Siebapparat, | K         | Klappe                          |
|                                | Siebmaschine, Abscheider                                   |           |                                 |
| G                              | Getriebe                                                   | R         | Rückschlagarmatur               |
| Н                              | Hebe-, Förder-, Transporteinrichtung                       | S         | Schieber                        |
| K                              | Kolonne                                                    | V         | Ventil                          |
| M                              | Elektromotor                                               | Χ         | Sonstige Armatur                |
| Р                              | Pumpe                                                      | Υ         | Armatur mit Sicherheitsfunktion |
| R                              | Rührwerk, Rührbehälter mit Rührer, Mischer, Kneter         |           |                                 |
| S                              | Schleudermaschine, Zentrifuge                              |           |                                 |
| Т                              | Trockner                                                   |           |                                 |
| V                              | Verdichter, Vakuumpumpe, Ventilator                        |           |                                 |
| W                              | Wärmeaustauscher                                           |           |                                 |
| Х                              | Zuteil-, Zerteileinrichtung, sonstige Geräte               |           |                                 |
| Υ                              | Antriebsmaschine außer Elektromotor                        |           |                                 |
| Z                              | Zerkleinerungsmaschine                                     |           |                                 |


Rohstoffe: Vorkommen, Förderung und Aufarbeitung

### Normsymbole in Verfahrensfließbildern (1) (nach EN ISO 10628)










### Normsymbole in Verfahrensfließbildern (2) (nach EN ISO 10628)



#### 1.2. Generelles zur Projektierung chemischer Anlagen

Wirtschaftliche/technische/chemische Aspekte Rohstoffe: Vorkommen, Förderung und Aufarbeitung

### Stofftrennung

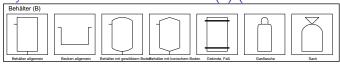
Thermische Stofftrennung

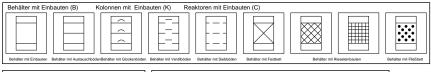
offumwandlungen

### Mechanische Stofftrennungen (s-s, s-l, s-g)

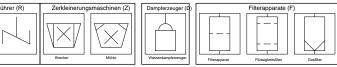
#### nach Aggregatzuständen:

- ► s-s: Sortierverfahren
  - Dichtesortierung
  - Sortierung im Magnetfeld
  - Sortierung im elektrischen Feld
  - ▶ Flotation
- s-I: Sedimentation
  - ▶ Filtration (F¹)
  - Zentrifugen (Hydrozyklone)
  - ▶ Trocknen (T)
- s-g: Entstaubung
  - Zyklone (F)


<sup>1:</sup> Kennbuchstabe


### Thermische Stofftrennung (I-I, g-g, I-g)

- ▶ wichtig vor allem bei Verarbeitung von Gasen/Flüssigkeiten (Organik)
- ▶ gelegentlich auch bei AC-Prozessen wichtig
- ▶ PC: Mischphasenthermodynamik
- nach Trennprinzip:
  - ► Rektifikation (A: Rektifikations-Kolonnen, (K¹))
  - ▶ I-I-Extraktionen (A: Kolonnen oder Mischer/Scheider-Batterien)
  - Lösen
  - Kristallisation und Fällung
  - Adsorption
  - Ionenaustausch
  - Trennung mit Membranen


<sup>1:</sup> Kennbuchstabe

# Normsymbole in Verfahrensfließbildern (1) (nach EN ISO 10628)







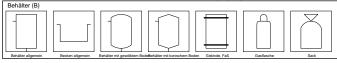


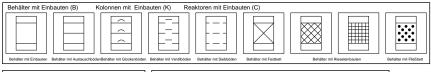
#### 1.2. Generelles zur Projektierung chemischer Anlagen

Wirtschaftliche/technische/chemische Aspekte Rohstoffe: Vorkommen, Förderung und Aufarbeitung Stofftrennung

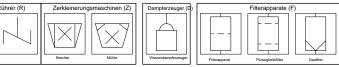
Mechanische Stofftrennung Thermische Stofftrennung

### Stoffumwandlungen


### Stoffumwandlungen/Reaktionen


- 1. Gasreaktionen
  - meist als Druckreaktionen
  - häufig mit hetereogenen Katalysatoren
  - ► Reaktortyp: Strömungsrohr (C¹)
- 2. Reaktionen in flüssiger Phase
  - Fällungen
    - reziproke Umsetzungen
    - Neutralisationen
    - Redoxreaktionen
    - homogen-katalysierte Reaktionen
    - Reaktortyp: meist Rührkessel(kaskade) (R<sup>1</sup>)
- 3. Hochtemperaturreaktionen (Spezialität der AC)
  - ... in Öfen (z.B. Drehrohrofen für Zement; Hochofen bei Fe/Stahl) (D1)
  - ... in Flammen (Pyritrösten, 'Carbon-Black'-Herstellung usw.)
- 4. Elektrochemische Prozesse (Elektrolysen) (Redox!)
  - ► Schmelzfluss-Elektrolysen (Gewinnung unedler Metalle wie z.B. Al, Na, ...)
  - wässrige Elektrolysen
    - zur Metallgewinnung (z.B. Zn) oder Feinreinigung (Cu, Edelmetalle)
    - Nichtmetall(Verbindungen) mit hohen/niedrigen Oxidationsstufen (z.B. Chlor-Alkalielektrolyse)

<sup>1:</sup> Kennbuchstabe


#### Stoffumwandlungen

# Normsymbole in Verfahrensfließbildern (1) (nach EN ISO 10628)









### 1.3. Inhaltsverzeichnis, Prozess-Auswahl

- 1. Einleitung
- 2. Gase
  - ► Edelgase,  $N_2$ ,  $O_2$  Luftzerlegung (Trennverfahren, ohne Stoffumwandl.)  $\Leftarrow$
  - ► Ammoniak (inkl. Wasserstoff; Gasreaktion) ←
- 3 Salze
  - ► KCI (ohne Stoffumwandlung) ←
  - Na<sub>2</sub>CO<sub>3</sub> (reziproke Umsetzung) ←
  - Phosphate (Neutralisations- und Verdrängungsreaktionen)
  - Chlorate und Perchlorate (elektrochemische Oxidation)
- 4. Säuren
  - Schwefelsäure (über Gasreaktionen)
  - ► Essigsäure (homogene Katalyse) ←
  - ► Phosphorsäure (durch Verdrängungsreaktionen)
- 5. Basen
  - ▶ Chloralkali-Elektrolyse ←
- 6 Metalle
  - Eisen, Stahl
    - ▶ Kupfer ←
  - Aluminium
- 7. ... ?
  - ► Silicate, Dünger, Hochtemperaturwerkstoffe, Halbeiter, Pigmente, ....