
Magnetmaterialien

3. Themenbereich: Magnetismus und Ladungstransport

AGP-Begleit'vorlesung' (AC-III)

13. November 2024

Caroline Röhr Magnetmaterialien

- ${\bf 0}$ Allgemeine Übersicht: Physikalische Eigenschaften von Festkörpern
- ② Grundlagen des Magnetismus Physikalische Grundlagen Atomarer/molekularer Magnetismus Kollektiver Magnetismus
- Messung magnetischer Eigenschaften* 'Magnetische Messungen' (SQUID-Magnetometer) Mößbauerspektroskopie Spinstrukturen mittels n-Beugung
- Materialien
 Metalle und Legierungen
 Oxide
- 6 Anwendungen von Magnetmaterialien
- 6 Zusammenfassung und Literatur

2 / 53

Caroline Röhr Magnetinaterialien 13.11.2024

- Allgemeine Übersicht: Physikalische Eigenschaften von Festkörpern
- Grundlagen des Magnetismus
 Physikalische Grundlagen
 Atomarer/molekularer Magnetismus
 Kollektiver Magnetismus
- Messung magnetischer Eigenschaften*
 'Magnetische Messungen' (SQUID-Magnetometer)
 Mößbauerspektroskopie
 Spinstrukturen mittels n-Beugung
- MaterialienMetalle und LegierungenOxide
- 3 Anwendungen von Magnetmaterialien
- © Zusammenfassung und Literatur

Klassifizierung physikalischer Eigenschaften

Ursache: Änderung äußerer Parameter/Feldgröße (Zustandsvariable 1)

- ① Polarisations-Effekte
 - ▶ statischer Response, Gleichgewicht
 - ► ∞-hoher Transport-Widerstand
 - ► → Änderung in einer Mengen/Zustandsgröße² (Wirkung)
 - ► Beispiele:

direkt: \vec{B} -Feld ? Änderung der Magnetisierung \vec{M} ? \mapsto Magnetismus indirekt: T-Änderung ? Änderung der Magnetisierung \vec{M} ? \mapsto pyromagnetischer Effekt

- 2 Transport-Effekte
 - \blacktriangleright dynamischer Response, Abweichung vom Gleichgewicht
 - ▶ kein/geringer Transport-Widerstand
 - ightharpoonup Fluß von Teilchen, Ladungsträgern, ... usw. (Wirkung)
 - ► Beispiele:

direkt: \vec{E} -Feld ? Ladungstransport ? \mapsto Elektrodynamik indirekt: \vec{E} -Feld ? Wärmeleitung ? \mapsto Peltier-Effekt

Caroline Röhr Magnetmaterialien 13.11.2024

 $^{^1}$ Zustandsvariable: $T,\ p,\ n,\ {\rm Magnetfeld}\ \vec{H},\ {\rm elektrische}\ {\rm Feld}\ \vec{E},\ ...;\ ^2$ Zustandsgrößen: $V,\ \rho,\ {\rm innere}$ Energie $U,\ {\rm Enthalpie}\ H,\ S,\ F,\ {\rm dielektrische}\ {\rm Polarisation}\ \vec{P},\ {\rm Magnetisierung}\ \vec{M}_{\vec{P}}\ ...\ \stackrel{?}{\equiv}\ \lor\ \stackrel{?}{\equiv}\ \lor\ \stackrel{?}{\equiv}\ \lor\ \stackrel{?}{\equiv}\ \lor$

① Polarisations-Effekte: Prinzip

- lacktriangle Änderung der Zustandsvariablen (Feldgröße $X)\mapsto$
- ightharpoonupÄnderung der Zustandsgröße/Materialeigenschaft (Mengengröße Y)
- ▶ allgemein:

$$\chi^{YX} = \frac{\delta Y}{\delta X}$$
bzw. $\delta Y = \chi^{YX} \delta X$

- \blacktriangleright Proportionalitäts'konstante' $\chi^{X,Y}$ (Suszeptibilität)
 - Material'konstante' für X/Y
 bei linearem Zusammenhang (erfüllt bei kleiner, langsamer Änderung)
 z.B. Mechanik: Spannung ↔ Dehnung: HOOK'sches Gesetz
 - je nach $X/Y \mapsto$ unterschiedliche Namen
 - X/Y richtungsabhängig (Vektoren, Tensoren) $\mapsto \chi$ Tensoren höherer Stufe
- $\blacktriangleright~\chi^{X,Y}$ häufig nicht 'konstant'
 - \bullet abhängig von Vorbehandlung des Materials (Hysterese) \mapsto ferroische Eigenschaften
 - frequenzabhängig (komplexe Grössen), → optische Eigenschaften, Elektronik

Caroline Röhr Macnolmateriulien 13,11,2024 5/53

Übersicht: Polarisations-Effekte¹

	Feldgröße X					
Mengen	Temperatur	elektrisches Feld	Magnetfeld	mechanische Spannung		
größe $Y \downarrow \downarrow$	T [K]	E_i [V/m]	$H_i [Vs/m^2]$	$\sigma_{i,j} [N/m^2]$		
Entropie	Wärmekapazität	elektrokalorischer Effekt	magnetokalorischer Ef- fekt			
$S [J/m^2s]$	$\chi^{ST} = c_p = \frac{\delta S}{\delta T} T$	$\chi_i^{SE} = \frac{\delta S}{\delta E}$	$\chi_i^{SH} = \frac{\delta S}{\delta H}$	$\chi_{i,j}^{S\sigma} = \frac{\delta S}{\delta \sigma}$		
elektrische Polarisation	1 0	elektrische Suszeptibili- tät	magnetoelektrischer Effekt	piezoelektrischer Effekt		
$P_k [\mathrm{As/m^2}]$	$\chi_k^{PT} = \frac{\delta P}{\delta T}$	$\chi_{i,k}^{PE} = \frac{\delta P}{\delta E}$	$\chi_{i,k}^{PH} = \frac{\delta P}{\delta H}$	$\chi_{i,j,k}^{P\sigma} = \frac{\delta P}{\delta \sigma}$		
				piezoelektrische Moduln		
Magneti- sierung	1.0	fekt	bilität	piezomagnetischer Effekt $\chi_{i\ j\ k}^{M\sigma} = \frac{\delta P}{\delta \sigma}$		
M_k [A/m]	$\chi_k = \frac{1}{\delta T}$	$\chi_{i,k} = \frac{1}{\delta E}$	$\chi_{i,k} = \frac{\pi}{\mu} = \frac{\delta H}{\delta H}$	$\chi_{i,j,k} = \frac{1}{\delta \sigma}$ piezomagnetische Moduln		
mechanische Deformation	dehnung		reziproker piezomagne- tischer Effekt	Spannungs-Dehnungs- Verhalten		
$\epsilon_{k,l}$	$\chi_{k,l}^{\epsilon T} = \alpha_{k,l} = \frac{\delta \epsilon}{\delta T}$	$\chi_{i,k,l}^{\epsilon E} = \frac{\delta \epsilon}{\delta E}$	$\chi_{i,k,l}^{\epsilon H} = \frac{\chi}{\mu} = \frac{\delta \epsilon}{\delta H}$	$\chi_{i,j,k,l}^{\epsilon\sigma} = \frac{\delta\epsilon}{\delta\sigma}$		
		piezoelektrische Moduln				
	zerrungstensor		duln	Young-Moduln		

6 / 53

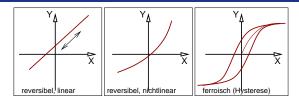
Caroline Röhr Magnetmaterialien 13.11.2024

¹ thermodynamische Klassifizierung phänomenologischer Material'konstanten' « $1 \rightarrow 4$ $1 \rightarrow 4$ $2 \rightarrow 4$ $3 \rightarrow 4$ $4 \rightarrow 4$

Zusammenfassung Tabelle

Diagonalelemente:

- ▶ direkte Eigenschaftsänderungen
- ightharpoonup Linearität \mapsto einfacher 'Normalfall' der Physik


Nebendiagonalen:

- ▶ zunächst 'unerwartete' Sekundäreffekte
- ▶ für Anwendungen interessant
- ▶ Umwandlung von Energien
 - \bullet pyroelektrischer Effekt: Wärme \Rightarrow elektrische Spannung
 - \bullet piezoelektrischer Effekt: E-Feld \Rightarrow mechanische Deformation

7 / 53

Caroline Röhr Magnetmaterialien 13.11.2024

Abweichungen von der Linearität \mapsto Ferroische Eigenschaften

- praktisch interessant vor allem für Hauptdiagonale (direkte Effekte)
- nur für Spalten 2-4 (beide Größen richtungsabhängig)

- ieweils für elektrische, magnetische und mechanische Felder
 - dia: keine Polarisation möglich (M: diamagnetische Stoffe wie NaCl)
 - para: Polarisation möglich, aber nicht vorhanden
 - ...-elektrisch: alle Dipole statistisch verteilt
 - Hochtemperaturform-Formen ($> T_{\rm C,N}$) aller weiteren Ausrichtungen \downarrow
 - ...-magnetisch: alle Spins (Ionen) statistisch verteilt ferro: Polarisation vorhanden, umkehrbar, mit Hysterese
 - antiferro: durch Kopplung der Polarisationen gegensinnige Ausrichtung
 - keine resultierende Gesamtpolarisation, keine Hysterese
 - ferri: gegensinnige Ausrichtung, aber unterschiedlich große Polarisation

Caroline Röhr 13 11 2024

- Allgemeine Übersicht: Physikalische Eigenschaften von Festkörpern
- ② Grundlagen des Magnetismus Physikalische Grundlagen Atomarer/molekularer Magnetismus Kollektiver Magnetismus
- Messung magnetischer Eigenschaften* 'Magnetische Messungen' (SQUID-Magnetometer) Mößbauerspektroskopie Spinstrukturen mittels n-Beugung
- Materialien
 Metalle und Legierungen
 Oxide
- **5** Anwendungen von Magnetmaterialien
- 6 Zusammenfassung und Literatur

- Allgemeine Übersicht: Physikalische Eigenschaften von Festkörpern
- ② Grundlagen des Magnetismus Physikalische Grundlagen

Atomarer/molekularer Magnetismi

Kollektiver Magnetismus

Messung magnetischer Eigenschaften*

'Magnetische Messungen' (SQUID-Magnetometer)

Mößbauerspektroskopie

Spinstrukturen mittels n-Beugung

- Materialien
 Metalle und Legier
 - Metalle und Legierungen

Oxide

- **6** Anwendungen von Magnetmaterialien
- 6 Zusammenfassung und Literatur

Magnetismus: Grundlagen

- ▶ im Vakuum
 - magnetische Feldstärke (Erregung): H (in [A/m])
 - \mapsto magnetische Induktion (Flußdichte): B (in $[T = Vs/m^2]$)
 - $B = \mu_o H$ mit der magnetischen Feldkonstante $\mu_0 = 4\pi \cdot 10^{-7} \text{Vs/Am}$
- ▶ mit Materie (im homogenen Magnetfeld)
 - statt $B = B_{\text{aussen}}$ ist im Innern des Stoffes: $B_{\text{innen}} = \mu_r B_{\text{aussen}}$
 - $\mu_r = \frac{B_{\text{innen}}}{B_{\text{aussen}}}$ (dimensionslos) = Permeabilität = 'Durchlässigkeit' (1)
 - magnetische Polarisation $J=\mathrm{im}$ Stoff hinzukommende/wegfallende Induktion:

$$J = B_{\text{innen}} - B_{\text{aussen}} \quad \mathbf{3}$$

- 2 in 3 einsetzen: $J = (\mu_r 1)B_{\text{aussen}}$
- J (in [T]) $\propto B_{\text{aussen}}$: $J = \chi_V B_{\text{aussen}}$
- Proportionalitätsfaktor $\chi = \text{magn. Suzeptibilität} = \text{'Aufnahmefähigkeit'}$ (0)
- durch Vergleich von \bullet und \bullet folgt $\chi_V = \mu_r 1$
- ullet für J folgt insgesamt:

$$J = B_{\text{innen}} - B_{\text{aussen}} = (\mu_r - 1)B_{\text{aussen}} = \chi_V B_{\text{aussen}} = \chi_V \mu_0 H$$

• Magnetisierung M [A/m] (Bezug zum äußeren Feld): $M = \frac{J}{\mu_0} = \chi_m H$

Magnetismus: Grundlagen, physikalische Größen

- ... je nach
 - ▶ Größe/Vorzeichen von μ (1) und χ (0)
 - ightharpoonup Temperatur-Abhängigkeit dieser Größen \mapsto
- \dots verschiedene Substanzgruppen/Arten des Magnetismus \downarrow
 - ▶ atomarer/molekularer Magnetismus
 - diamagnetisch
 - paramagnetisch
 - ▶ kollektiver Magnetismus (kooperativ, Festkörper-Eigenschaft)
 - ferromagnetisch
 - antiferromagnetisch
 - ferrimagnetisch
 - komplexere magnetische Ordnungen

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ 臺 釣९♡

- Allgemeine Übersicht: Physikalische Eigenschaften von Festkörpern
- 2 Grundlagen des Magnetismus

Physikalische Grundlagen

Atomarer/molekularer Magnetismus

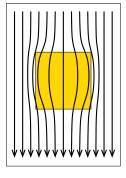
Kollektiver Magnetismus

Messung magnetischer Eigenschaften*

'Magnetische Messungen' (SQUID-Magnetometer)

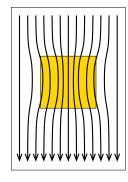
Mößbauerspektroskopie

Spinstrukturen mittels n-Beugung


- Materialien
 - Metalle und Legierungen

Oxide

- 6 Anwendungen von Magnetmaterialien
- 6 Zusammenfassung und Literatur


Diamagnetismus

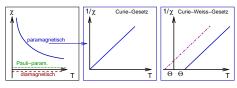
- ► Eigenschaft <u>aller</u> Substanzen
- ► Prinzip
 - \bullet angelegtes äußeres Magnetfeld H
 - ullet induziert zusätzliche Elektronenbewegung = Magnetfeld in allen Atomen
 - nach Lenz'scher Regel entgegengesetzt zum angelegten Feld
 - Größe = $f(Abstand der e^- vom Kern)$
 - Resultat: Feldliniendichte im Materialinneren geringer
 - Feld wird aus Material herausgedrängt
 - Material wird vom Magnetfeld abgestossen
- $\triangleright \chi < 0 \text{ bzw. } \mu < 1$
- sehr schwacher Effekt: $\chi_V = -10^{-5}$ bis -10^{-6}
- temperaturunabhängig
- ► Feld-unabhängig

Paramagnetismus

- Substanzen mit ungepaarten Elektronen
 - Radikale
 - Übergangsmetall- und Lanthanoid-Verbindungen
 - elementare Metalle (Pauli-Paramagnetismus)
- ► Prinzip:
 - Ausrichtung von Elementarmagneten (e^- -Spin/Bahn) im äußeren Feld
 - Verstärkung der Feldlinien im Materialinneren
 - Feld wird in Material hineingezogen
 - Material wird in Feld hineingezogen
- \triangleright $\chi > 0$ bzw. $\mu > 1$
- ightharpoonup schwacher Effekt: $\chi_V = +10^{-5}$ bis $+10^{-3}$

... und etwas Interaktives dazu ...

- ▶ Diamagnetismus und Paramagnetismus (von NationalMAGLAB)
- ▶ Vektorfelder (Falstad)


Paramagnetismus von Übergangsmetall-Ionen

- ▶ keinste Einheit: 1 BM = $\mu_B = \frac{e\hbar}{2m_e}$
- ▶ Spinanteil: $\mu_S = g\sqrt{S(S+1)} \ (g=2; S=\text{Gesamtspin})$ (z.B. für $1e^-$: $2\sqrt{\frac{1}{2}(\frac{1}{2}+1)} = 1.73 \ \mu_B$)
- ▶ Bahnanteil: $\mu_L = \sqrt{L(L+1)}$
- ▶ bei 3*d*-Metallen praktisch nur Spinanteil wichtig ('Spin-only'-Werte)
- ► Faustregel: $\mu_{\rm S}$ in $\mu_{\rm B} = {\rm Zahl}$ ungepaarter $e^- + 1$
- \triangleright passend für frühe 3*d*-Metalle, ab d^6 leichte Abweichungen
- ▶ für alle kooperativen Effekte (s.u.) genaue Werte nicht wichtig
- ▶ die wichtigsten Ionen für ferroische Materialien ↓

Ion	e^- -Konfiguration	Grundterm	μ_s/μ_B berechn.	$\mu_s/\mu_B \exp$.
V^{4+}	d^1	$^{2}D_{\frac{3}{2}}$	1.73	1.8
V^{3+}	d^2	${}^{3}F_{2}^{^{2}}$	2.83	2.8
V^{2+}, Cr^{3+}	d^3	${}^{4}F_{rac{3}{2}}$ ${}^{5}D_{0}$	3.87	3.8
$\mathrm{Mn^{3+}}$, $\mathrm{Cr^{2+}}$	$HS-d^4$	$^{5}D_{0}^{^{2}}$	4.9	4.9
Mn^{2+} , Fe^{3+}	$HS-d^5$	${}^{6}S_{rac{5}{2}}$ ${}^{5}D_{4}$	5.92	5.9
$\mathrm{Fe^{2+}}$	$HS-d^6$	$^{5}D_{4}^{^{2}}$	4.90	5.4

Caroline Röhr Magnetmaterialien 13.11.2024

Paramagnetismus: T-Abhängigkeit

- ▶ ohne Wechselwirkung zwischen den Spins
 - mit fallendem T steigt χ (weniger thermisch bedingte Unordnung)
 - Curie-Gesetz: $\chi_{\text{para}} = \frac{C}{T}$
- ▶ mit paralleler/antiparalleler Wechselwirkung der Spins (s.u.)
 - Curie-Weiss-Gesetz $\chi_{\text{para}} = \frac{C}{T \theta}$
 - θ : paramagnetische Curie-Temperatur
 - ${}^{\bullet}$ \oplus bei paralleler Wechselwirkung ($\uparrow \uparrow)$
 - $\bullet \ \ominus$ bei antiparalleler Wechselwirkung $(\uparrow \downarrow)$
- \blacktriangleright elementare Metalle \mapsto Pauli-Paramagnetismus
 - χ schwach positiv (nur wenige e^- bei E_F ungepaart)
 - $\bullet~\chi$ unabhängig von T

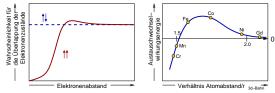
4□ > 4□ > 4□ > 4□ > 4□ > 4□

- 1 Allgemeine Übersicht: Physikalische Eigenschaften von Festkörpern
- 2 Grundlagen des Magnetismus

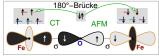
Physikalische Grundlagen Atomarer/molekularer Magnetismus

Kollektiver Magnetismus

Messung magnetischer Eigenschaften*


Mößbauerspektroskopie

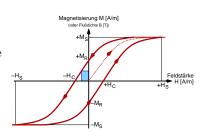
Spinstrukturen mittels n-Beugung


- Materialien
 Metalle und Legierunger
- 6 Anwendungen von Magnetmaterialien
- 6 Zusammenfassung und Literatur

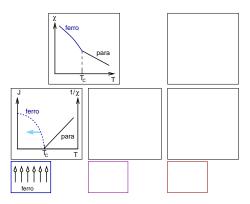
kollektiver/kooperativer Magnetismus (Festkörper-Eigenschaft)

- ▶ < $T_{\rm C/N}$ (Curie/Néel-Temperatur) \mapsto Wechselwirkung der magnetischen Momente benachbarter Teilchen im Festkörper
- ▶ zwei Mechanismen
 - 1 direkte Wechselwirkung der Spins benachbarter Teilchen
 - ferromagnetisch
 - ullet Wahrscheinlichkeit für Überlappung von Ψ besser bei antiparallelem Spin
 - wichtig: hohe DOS bei E_F → mittlere 3d-Elemente

2 indirekte Wechselwirkung über diamagnetische Brücken (Superaustausch)


- meist antiferro-, gelegentlich aber auch ferro-magnetisch
- abhängig von d-e⁻-Konfiguration und Winkel in Brücke (GKA-Regeln*)

*Goodenough-Kanamori-Anderson-Regeln

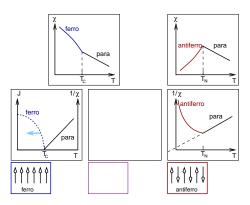

Caroline Röhr Masnetmaterialien 13.11.2024

Ferromagnetismus (kooperativ) \\ \\ \\ \\ \\ \\ \

- ▶ parallele Ausrichtung benachbarter Spins
- ► Materialien:
 - Übergangsmetalle: Fe, Co, Ni
 - Seltene Erden: Tb, Dy, Gd
 - diverse Oxide, z.B. CrO₂, Ferrite
- ▶ Prinzip: Wirkung der magnetischen Feldstärke $H \leftrightarrow \text{auf}$ Magnetisierung M [A/m]: Hysterese
 - Anlegen äußerer Felder H (Neukurve)
 - parallele Ausrichtung der Spins innerhalb Weiss'scher Bezirke
 - Anwachsen von M mit H bis zur Sättigungsmagnetisierung M_s [A/m]:
 - anfangs: Verschiebung von BLOCH-Wänden
 - bei großem H: Umklappen kompletter Domänen (Korn = Domäne → hart!)
 - !! M gelegentlich auch als Flußdichte B [T]
 - Entfernung von H: Remanenz-Magnetisierung M_R bleibt (Stoff wird Permanent-Magnet)
 - Umpolung: Koerzitiv-Feld
 - ullet Fläche innerhalb der Kurve \propto Energie, die zur Umkehr nötig ist
 - Kenngröße (BH)_{max} (blaues Rechteck)

Ferromagnetismus: T-Abhängigkeit

- $ightharpoonup T_{\rm C}$: ferromagnetische Curie-Temperatur
- ▶ < $T_{\rm C}$: χ fällt mit steigender Temperatur \mapsto Unordnung durch thermische Bewegung
- $ightharpoonup > T_{\rm C}$: paramagnetisch $\mapsto \chi$ fällt mit steigender Temperatur


◆□▶ ◆□▶ ◆臺▶ ◆臺▶ 臺 釣९♡

Antiferromagnetismus (kooperativ) $\uparrow\downarrow\uparrow\downarrow$

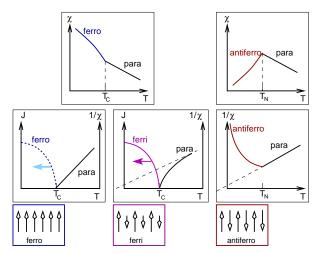
- $ightharpoonup < T_{
 m N}$ (Néel-Temperatur) \mapsto antiparallele Spinausrichtung durch Superaustausch
- ightharpoonup Materialien ($T_{\rm N}$ in K)
 - Mn (95)
 - Cr (313)MnO (120)
 - CoO (292)
 - NiO (523)
 - α -Fe₂O₃, Hämatit (953)
 - FeF₂ (80)
- ightharpoonup keine Hysterese \mapsto keine Anwendung

Caroline Röhr Magnetmaterialien 13.11.2024

Antiferromagnetismus: T-Abhängigkeit

- ► T_N: NÉEL-Temperatur
- ▶ < T_N : χ steigt mit steigender der Temperatur \mapsto Unordnung führt zu resultierendem Moment d.h. stört Gleichverteilung
- $ightharpoonup > T_{
 m N}$: paramagnetisch $\mapsto \chi$ fällt mit steigender Temperatur

23 / 53

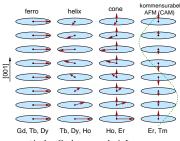

Caroline Röhr Magnetmaterialien 13.11.2024

Ferrimagnetismus (kooperativ)

- \triangleright antiparallele Ausrichtung, aber mit ungleicher e^- -Zahl oder Richtung
- ▶ relativ häufig in komplexeren Verbindungen
- ▶ wichtigste Materialien: 'Ferrite' (div. Fe-Oxide)
 - MFe₂O₄ (kubische Spinell-Struktur, weichmagnetisch)
 - γ-Fe₂O₃ (Maghemit)
 - BaFe₁₂O₁₉ (hexagonaler Ba-Ferrit, hartmagnetisch)
 - Granate ('YIG')
- ▶ Hysterese wie Ferromagnetika, daher gleiche Anwendungen
- ▶ Vorteil: meist Oxide usw., d.h. kein Wirbelstromverlust durch induzierte Ströme

Caroline Röhr Magnetmaterialien 13.11.2024 24/53

Ferrimagnetismus: T-Abhängigkeit



- ► analog Ferromagnetismus
- ▶ i.A. negative Debye-Temperatur Θ

Caroline Röhr Magnetmaterialien 13.11.2024 25/53

Andere Ordnungsmöglichkeiten der Spins (kooperativ)

- ▶ ↑ kollineare Spinordnung
- ▶ nicht kollinear:
 - AFM verkantet: FeF_3 , FeBO_3 ($\alpha\text{-Fe}_2\text{O}_3$ bei $T>23^\circ\text{C}$)
 - ullet spiralförmig: einige späte Ln-Elemente \longrightarrow
 - magnetische Frustration
- ▶ weitere interessante Eigenschaften/Materialien
 - Frequenzabhängige Eigenschaften (z.B. FARADAY-Effekt)
 - Ferrofluide
 - Nanopartikel, z.B. hart/weich Kern/Schale-Partikel etc.

magnetische Ordnungen bei Ln

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · 釣९○·

26 / 53

Caroline Röhr Magnetmaterialien 13.11.2024

- 1 Allgemeine Übersicht: Physikalische Eigenschaften von Festkörpern
- ② Grundlagen des Magnetismus Physikalische Grundlagen Atomarer/molekularer Magnetismus Kollektiver Magnetismus
- Messung magnetischer Eigenschaften*
 'Magnetische Messungen' (SQUID-Magnetometer)

Mößbauerspektroskopie

Spinstrukturen mittels n-Beugung

- Materialien
 Metalle und Legierungen
 Oxide
- **6** Anwendungen von Magnetmaterialien
- © Zusammenfassung und Literatur

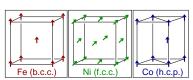
27 / 53

Messung magnetischer Eigenschaften

nur einige Links:

- ► SQUID-Magnetometer, Fa. Quantum-Design
- ► Präsentation Mössbauerspektroskopie (PDF)
- ► Präsentation: Neutronenbeugung (PDF)

- Allgemeine Übersicht: Physikalische Eigenschaften von Festkörpern
- ② Grundlagen des Magnetismus Physikalische Grundlagen Atomarer/molekularer Magnetismus Kollektiver Magnetismus
- Messung magnetischer Eigenschaften* 'Magnetische Messungen' (SQUID-Magnetometer) Mößbauerspektroskopie Spinstrukturen mittels n-Beugung
- **5** Anwendungen von Magnetmaterialien
- 6 Zusammenfassung und Literatur


- Allgemeine Übersicht: Physikalische Eigenschaften von Festkörpern
- Grundlagen des Magnetismus Physikalische Grundlagen Atomarer/molekularer Magnetismus Kollektiver Magnetismus
- Messung magnetischer Eigenschaften* 'Magnetische Messungen' (SQUID-Magnetometer) Mößbauerspektroskopie Spinstrukturen mittels n-Beugung
- Materialien
 Metalle und Legierungen
 - Oxide
- 6 Anwendungen von Magnetmaterialien
- 6 Zusammenfassung und Literatur

Metalle und Legierungen

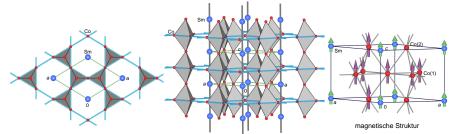
3d-Metalle

- ▶ Fe, Co, Ni \mapsto ferromagnetisch, unterschiedliche Spinstruktur \Rightarrow
- ▶ Cr, Mn → bei niedrigen Temperaturen antiferromagnetisch
 (Cr: b.c.c. mit antiparalleler Orientierung entlang einer Achse)
- □ übrige 3d-Metalle → PAULI-Paramagnete (kein kollektiver Magnetismus)
- ▶ vereinfachte Begründung:
 - mittlere Elemente der d-Reihe \mapsto viele ungepaarte e^-

 - Fe, Co, Ni: größere Abstände \mapsto parallele WW

	$T_{\rm C/N}$ [K]	$_{\mathrm{FM}}$	AFM
Fe	1043	x	
Ni	631	x	
Co	1404	x	
$Nd_2Fe_{14}B$	583	x	
$SmCo_5$	998	x	
Mn	95		x
Cr	313		x

Caroline Röhr Macnelmaterialien 13.11.2024 31/53

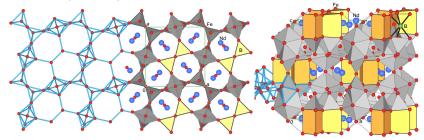

Metalle und Legierungen

Seltene Erden

- ▶ viele ungepaarte Spins
- \blacktriangleright z.T. T-abhängig Wechsel des Magnetismus, sehr komplexe magnetische Strukturen

Legierungen (besonders starke Dauermagnete)

SmCo₅ (CaCu₅-Typ)

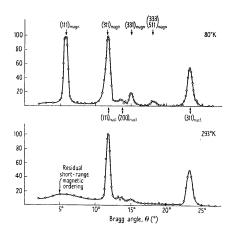

- magnetische Momente bei 5 K: Sm 1 μ_B ; Co(1,2): 2.2 μ_B
- $H_C = 760 \text{ kA/m}, (B \cdot H)_{\text{max}} = 200 000 \text{ TA/m}$
- $2 Ln_2Co_{17} (Th_2Zn_{17}-Typ)$

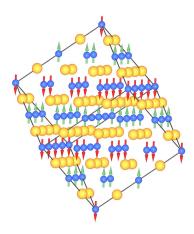
◆ロト ◆団ト ◆重ト ◆重ト ■ からぐ

Metalle und Legierungen (Forts.)

Legierungen (besonders starke Dauermagnete)

- SmCo₅
- 3 Nd₂Fe₁₄B (Struktur)


- extrem starker Dauermagnet: $H_C = 880 \text{ kA/m}$, $(B \cdot H)_{\text{max}} = 360 000 \text{ TA/m}$
- $T_{\rm C} = 310 \, {}^{\circ}{\rm C}$


◆ロト ◆団 ト ◆園 ト ◆園 ト ・ 園 ・ から(*)

- Allgemeine Übersicht: Physikalische Eigenschaften von Festkörpern
- ② Grundlagen des Magnetismus Physikalische Grundlagen Atomarer/molekularer Magnetismus Kollektiver Magnetismus
- Messung magnetischer Eigenschaften* 'Magnetische Messungen' (SQUID-Magnetometer) Mößbauerspektroskopie Spinstrukturen mittels n-Beugung
- Materialien
 Metalle und Legierungen
 Oxide
- and Anwendungen von Magnetmaterialien
- 6 Zusammenfassung und Literatur

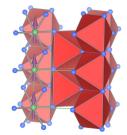
Übergangsmetalloxide $M^{\rm II}{\rm O}$

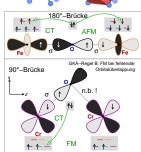
- ▶ antiferromagnetisch aufgrund von Superaustausch, keine Anwendung (!)
- ▶ magnetische Spinstruktur aus Neutronenbeugung (Zellvergrößerung)
- ▶ Spinstruktur = magnetische Überstruktur

Neutronen-Pulverdiffraktogramm von MnO unter-/oberhalb T_N

Spinstruktur von MnO

35 / 53


Caroline Röhr Magnetmaterialien 13.11.2024


Übergangsmetalloxide $M^{\mathrm{IV}}\mathrm{O}_2$ (Rutil-Typ)

- ightharpoonup z.B. CrO_2
- ightharpoonup tetragonale Rutil-Struktur \Rightarrow
- \blacktriangleright Bänder aus $trans\text{-}Kanten\text{-}verknüpften}$ [CrO $_6$]-Oktaedern
- lacktriangle über weitere Ecken miteinander verknüpft
- ► ferromagnetische Kopplung der d²-Ionen über 90° O-Brückenliganden
- ► GKA*-Regel B: FM bei fehlender Überlappung der durch LM-CT besetzbaren d-Orbitale mit den Ligand-p-Zuständen
- ► Eigenschaften und Verwendung von CrO₂
 - $H_C = 110 \text{ kA/m}; M_R = 0.08 \text{ T}$
 - $T_{\rm C} = 120 \, {}^{\circ}{\rm C}$

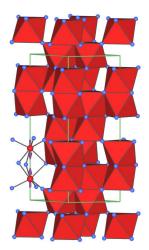
Caroline Röhr

• früher in Audiokasetten

FM, nach der GKA-Regel B

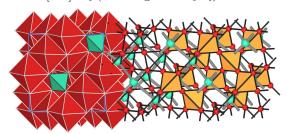
*Goodenough-Kanamori-Anderson-Regeln

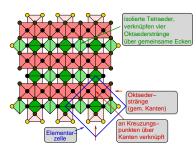
<□> <□> <□> < □> < □> < □>


13 11 2024

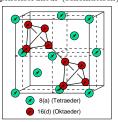
Übergangsmetalloxide ${M^{\mathrm{III}}}_{2}\mathrm{O}_{3}$

- ▶ z.B. Hämatit/Roteisenstein, Fe₂O₃
- ▶ wichtiges Fe-Mineral


- ► Korund-Struktur ⇒
- ▶ antiferromagnetisch, Spins von HS- d^5 Fe³⁺ in über eine Flächen verknüpften [FeO₆]-Oktaedern antiparallel orientiert
- ▶ keine Hysterese = keine Anwendung

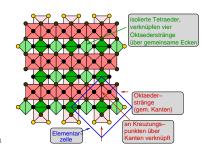


Spinstruktur von α -Fe₂O₃

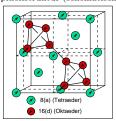

Spinelle I

- ▶ kubische, weichmagnetische Ferrite: MFe₂O₄
- ▶ meist ferri-magnetisch (s.u.)
- $ightharpoonup A^{t}[B_{2}]^{o}O_{4}$: Spinell- (MgAl₂O₄) Struktur
 - f.c.c. von O²⁻-Ionen
 - A^{2+} -Ionen in $\frac{1}{8}$ der Tetraederlücken (t)
 - B^{3+} -Ionen in $\frac{1}{2}$ der Oktaederlücken (o)
 - Ionen auf t- und o-Plätzen koppeln antiparallel (Superaustausch)
- ▶ Invers-Spinell: B^{3+} -Ionen auf t-Plätzen \mapsto $B^{t}[AB]^{o}O_{4}$ (z.B. Magnetit Fe₃O₄)

Spinellstruktur (schematisch)



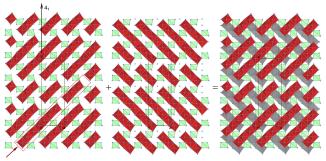
Spin-Struktur der Spinelle


4□ > 4♂ > 4 ≥ > 4 ≥ > 2 = 90

Spinelle II

- ► Inversionsgrad bestimmt Magnetismus
- ► z.B. MgFe₂O₄
 - komplette Inversion:
 - $1 \times \text{Fe}^{3+}$ (d^5) auf t,
 - $1 \times \text{auf o-Platz} \mapsto \text{antiferro-magnetisch} \mapsto \text{keine Hysterese} \mapsto \text{keine Anwendung}$
- ► technische wichtige Ferrite: M^{2+} Fe₂O₄ $(M^{2+} = Mg, Ni, Mn)$
 - ab ca. 1941 ('Ferrocube' Fa. Philips)
 - Mg/Mn-Ferrit
 Mg_{0.45}Mn^{II}_{0.55}Mn^{III}_{0.23}Fe_{1.77}O₄
 - hoher spezifischer elektrischer Widerstand
 - rechteckige Hysteresekurve

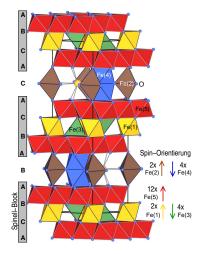
Spinellstruktur (schematisch)


Spin-Struktur der Spinelle

Spinelle III: γ -Fe₂O₃ (Maghemit)

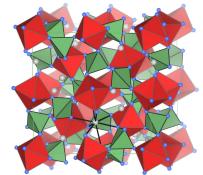
- ▶ <u>das</u> Material für DAT-Bänder zur Datenarchivierung $(T_c = 590\text{-}650^{\circ}\text{C}, H_C = 0.17 \text{ T}, M_S = 20\text{-}40 \text{ kA/m})$
- \blacktriangleright kristallisiert in Nadeln (l=30 nm, d=5 nm)
- ▶ Struktur: tetragonal, Raumgruppe $P4_12_12$ ($c=3c^*$)
- ▶ Defektspinell gemäß

•
$$A^{2+}B^{3+}{}_{2}O_{4} \xrightarrow{\times 6} A^{2+}{}_{6}B^{3+}{}_{12}O_{24} \xrightarrow{-2\times B^{3+}} A^{3+}{}_{6}B^{3+}{}_{10}O_{24} \xrightarrow{/8} [AB]^{3+}{}_{2}O_{3}$$


 \blacktriangleright Oktaederstränge mit 2 Defekten pro 12 Oktaeder (|:7 \square 3 \square :|)

*Symmetrieabbau $Fd\bar{3}m \rightarrow I4_1/amd \rightarrow I4_122 \rightarrow P4_32_12 \rightarrow c = 3c \rightarrow P4_12_12 =$

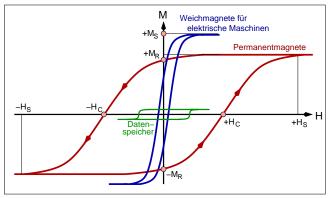
hexagonale Ferrite/Hartferrite


- ightharpoonup BaFe₁₂O₁₉ und SrFe₁₂O₁₉
- ▶ seit 1985: Bänder, erste (ED-)Disketten
- ► ferri-magnetisch, hartmagnetisch, ausgeprägte magnetische Anisotropie
- $H_c = 30-190 \text{ kA/m}, M_R = \text{bis } 0.4 \text{ T}$
- ▶ hexagonale Struktur, Raumgruppe $P6_3/mmc$, kristallisiert in hexagonalen Plättchen
- ► O^{2−}: dichte Kugelpackung mit komplexer Stapelfolge und 'Spinellblöcken' (| : **ABCA** : |)
- ▶ 5 kristallographisch verschiedene $HS-d^5$ Fe^{3+} :
 - **1** Fe(1), 2a, \uparrow , oktaedrisch, gelb
 - \bigcirc Fe(2), 2b, \uparrow , bipyramidal, braun
 - **3** Fe(3), 4f, \downarrow , tetraedrisch, grün
 - 4 Fe(4), 4f, \downarrow , oktaedrisch, blau
 - **5** Fe(5), 12k, \uparrow , oktaedrisch, rot

Granate '

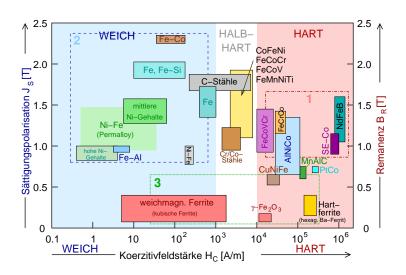
- ▶ allgemeine Formel: $A_3B_2C_3O_{12}$
- ► Struktur:
 - AlO₆-Oktaeder; SiO₄-Tetraeder
 - fast linear über O-Liganden verknüpft
 → guter Superaustausch
- ightharpoonup YIG etc, alle ferrimagnetisch \mapsto Hysterese
- ▶ kein Problem mit Inversion, da Untergitter mit 2:3 Ionenzahlverhältnis
- ► Einbau von Seltenerd-Ionen mit hohem Paramagnetismus möglich
- ► Anwendungen im Hochfrequenz-Bereich (FARADAY-Effekt)

	A_3	B_2	C_3	Magnetismus
Grossular	Ca_3	Al_2	Si_3	-
Uvarovit	Ca_3	Cr_2	Si_3	-
Pyrop	Mg_3	Al_2	Si_3	-
Andradit	Ca_3	Fe_2	Si_3	-
YIG	Y_3	$\overline{\text{Fe}}_2$	$\overline{\text{Fe}_3}$	ferrimagnetisch



- Allgemeine Übersicht: Physikalische Eigenschaften von Festkörpern
- ② Grundlagen des Magnetismus Physikalische Grundlagen Atomarer/molekularer Magnetismus Kollektiver Magnetismus
- Messung magnetischer Eigenschaften*
 'Magnetische Messungen' (SQUID-Magnetometer)
 Mößbauerspektroskopie
 Spinstrukturen mittels n-Beugung
- MaterialienMetalle und LegierungenOxide
- 6 Anwendungen von Magnetmaterialien
- 6 Zusammenfassung und Literatur

Hysterese-Schleifen nach Anwendungsbereichen


Ferro-/Ferri-Magnetismus \mapsto Hysterese ! drei Anwendungsbereiche:

- Dauermagnete (Hartmagnete)
- Weichmagnete für die Elektrotechnik
- 3 Datenspeicherung

44 / 53

Magnetmaterialien: Übersicht

alle Werte hängen mehr oder weniger stark von der Probenvorbehandlung/Korngrößen/\$chichten etc. 3b % % %

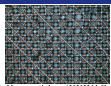
45 / 53

Magnetmaterialien: physikalische Größen

Anwendung	Material	μ_r	B_s	H_c	M_R	$(B \cdot H)_{max}$	$T_{ m c}$
		-	[T]	[A/m]	[T]	[TA/m]	[°C]
Dauer-	$SmCo_5$			760 000	0.95	200 000	725
magnete	$\mathrm{Nd}_{2}\mathrm{Fe}_{14}\mathrm{B}$			880 000	1.2	360 000	310
Weich-	Fe	5 000	2.14	10-200			770
magnete	45-Permalloy (Fe/Ni)	25 000	1.6	20			
	B2 Ferroxcube (Ni,Zn)Fe $_2$ O $_4$		0.3				
Daten-	γ -Fe ₂ O ₃			30 000	0.07 - 0.11		580-650
spei-	γ -Fe ₂ O ₃ :Co			60 000	0.08		
cherung	CrO_2			110 000	0.08		120
	BaFe ₁₂ O ₁₉			190 000	0.4	20 000	450
	Fe-Pigmente			75 000-130 000	0.28		
	Fe/Co (70/30)			90 000-160 000	0.8 - 1.3		
	Co:Pt (v. CoPtCrB)			300 000	0.8		

46 / 53

Anwendungen I


- Dauermagnete (Hartmagnete)
 - große Remanenz, sehr große Koerzitivfeldstärke H_c
 - typische Materialien: SmCo₅, Nd₂Fe₁₄B ⇒
 - Stator in Elektromotoren/Generatoren
 - (oder für viele andere Sachen)
- 2 Weichmagnete für die Elektrotechnik
 - Transformatoren, Spulenanker in Motoren und Generatoren (zum Funktionsprinzip)
 - geringe Fläche $M \times H$ (Energie!)
 - d.h. große Sättigungsmagnetisierung M_S bei kleiner Koerzitivfeldstärke H_c
 - geringe elektronische Leitfähigkeit
 Materialien:
 - - Fe mit isolierenden Zwischenschichten
 - 45 Permallov (Fe/Ni: 55/45)
 - weichmagnetische/kubische Ferrite
- 3 Datenspeicherung ↓

Dauermagnete aus 'NdFeB' $(Nd_2Fe_{14}B)$

Anwendungen II

- Dauermagnete (Hartmagnete)
- Weichmagnete für die Elektrotechnik
- 3 Datenspeicherung
 - rechteckige Hysterese-Kurve (1-0)
 - kleines $B \cdot H$, mittelgr. Remanenzen
 - ca. 1960: Kernspeicher aus Mg/Mn-Ferrit (nicht flüchtig!) (zum selber probieren der Funktionsweise)
 - Materialien: f
 ür B
 änder (und Disketten)
 - Rein-Eisen (H_C=75-140 A/m, M_R = 1 T)
 - CrO₂ (ferromagnetisch, Rutil-Typ)
 - BaFe₁₂O₁₉ (z.B. ED-Disketten, 3 μm)
 - γ-Fe₂O₃ (z.B. DD-Disketten, 720 kB; 2 μm)
 - γ-Fe₂O₃ mit 4 % Co (HD-Disketten, 1.44 MB, 1.2 μm; Standardmaterial für Daten-Tapes)
 - Datenarchivierung: Langzeitstabilität, geringer Preis
 - aktuell Standard: 45 TB/Band
 - Materialien: für Festplatten ↓

Ferrit-Kernspeicher (UNIVAC, 1961)

Musik-Kassette Cr-E II (CrO₂)

3.5" HD-Diskette, ab 1986

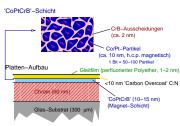
DDS-1-Tape

Festplatte (4.3 GB) 4日 > 4日 > 4目 > 4目 >

Anwendung III: Festplatten

- ➤ 'Longitudinal'/'perpendicular recording' ⇒
- ► Substrat-Scheibe nicht magnetisch, formstabil, geringe Rauigkeit (< 10 nm): Al, Mg, Glas
- ▶ dünne Diamant-Schicht ('carbon overcoat') gegen mechanische Beschädigung
- ► Magnetmaterialien älterer Platten:
 - Fe-Pt-Legierungen, auch γ -Fe $_2$ O $_3$
- ▶ aktuelle Platten: 'CoPtCrB'-Legierung
 - Magnetmaterial: Co mit 15-25 % Pt (h.c.p.)
 - magnetisierbare Partikel durch CrB-Grenzschichten getrennt ⇒
 - Chrom-Zwischenschicht zum Substrat
 - 1 Bit liegt auf ca. 50-100 Partikeln
- ▶ Plattenkapazitäten/Datendichten
 - aktuell: 3.5" Zehnplatter bis 22 TB
- 50 TB für 2026 angekündigt (Seagate)
- ► Lesekopf: GMR-Materialien

longitudinal Recording (LMR)


Speicherschicht

Perpendicular Recording (PMR)

Speicherschicht

Speicherschicht

Aufzeichnungs-Varianten

schematischer Aufbau einer

CoPtCrB-HDD

Videos Fa. Seagate und Erklärung zu Festplatten und MR

- Allgemeine Übersicht: Physikalische Eigenschaften von Festkörpern
- ② Grundlagen des Magnetismus Physikalische Grundlagen Atomarer/molekularer Magnetismus Kollektiver Magnetismus
- Messung magnetischer Eigenschaften*
 'Magnetische Messungen' (SQUID-Magnetometer Mößbauerspektroskopie
 Spinstrukturen mittels n-Beugung
- Materialien
 Metalle und Legierungen
 Oxide
- **a** Anwendungen von Magnetmaterialien
- 6 Zusammenfassung und Literatur

Zusammenfassung

- \blacktriangleright Magnetisierung M als statischer 'Response' auf magnetische Felder H
- ightharpoonup Hysterese = Nichtlinearität von H und M
- ▶ direkte indirekte (Superaustausch) Spin-Wechselwirkungen
- ▶ kollektiver Magnetismus (Voraussetzung: paramagnetische Atome/Ionen)
 - ferro
 - antiferro
 - ferri
 - •
- ► Materialien
 - Metalle und Legierungen (Fe, SmCo₅, Nd-Fe-B)
 - Übergangsmetall-Oxide (Ferrite, γ -Fe₂O₃)
- ► Anwendungen
 - 1 Permanentmagnete (hart)
 - 2 Weichmagnete der E-Technik (weich)
 - 3 Datenspeicherung

Caroline Röhr

Literatur

- ▶ A. R. West: Solid state chemistry and it's application, 2. Aufl., Wiley, 2014
- ▶ D. R. Askeland, W. Wright: Science and engineering of materials, 7. Aufl., Cengage Learning, 2021
- R. D. Tilley: Understanding solids: The science of materials, 3. Aufl., Wiley, 2021.
- W. D. Callister, R. W. Rethwisch, Fundamentals of Materials Science and Engineering. An integrated approach, 5. Ed., 2015.
- ▶ Lehrbücher der Physik
 - Lehrbücher der Festkörperphysik, z.B.
 - Ch. Kittel: Einführung in die Festkörperphysik, Oldenbourg.
 - R. Gross, A. Marx: Festkörperphysik, DeGruyter, 2014.
 - N. W. Ashcroft, N. D. Mermin, D. Wei: Solid state Physics, Cengage Learning Asia, 2016.
- ▶ H. Lueken: Magnetochemie, Teubner Studienbücher Chemie (1999).
- ▶ auf ruby (CR): Materialien/PDFs zur Vorlesung FK-Chemie (SS 22) und Lanthanoide (WS 21/22)

 Caroline Röhr
 Magnetmaterialien
 13.11.2024
 52 / 53

DANKE!

Caroline Röhr