Aufgabe	1	2	3	4	5	6	7	8
Punkte (je 10)	111					, ,		
Stu BSc Chemie □ R	ıdiengang: .egioCh. □						n Klausurerg ekanntgegeb	
A			•	hklausu			ng	
	<u>C</u> .	hemie	der IV	<u> Ietalle</u>	(AC-	11)		
							3	0.09.2025
Vame:		_Vorname	2:		Matrik	xel-Nr		
Hinweis: Verwenden S	Sio fiir dio A	ntworten de	n hintor dor	a Fragon froi	golossonon F	Paum Falle	e diosor nicht	nucroichon
ollte, benutzen Sie d				_	_			ausreichen
• Beschreiben	Sie die fol	genden B	egriffsna	are und n	ennen Sie	ieweils k	onkrete B e	eisniele
D esemensen	ore are ro	igenden D	egi mapa	are and n		Jewens K	ommede B e	displete.
(a) Halbme	$\operatorname{etall} \leftrightarrow \operatorname{Ha}$	albleiter						
(b) Kubokt	$aeder \leftrightarrow A$	Antikubok	taeder					
(10) 22310 221								
(c) Ferrom	$agnet \leftrightarrow A$	Antiferrom	nagnet					

(d) Disproportionierung \leftrightarrow Synproportionierung

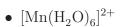
2	eine	nplexbildungsreaktionen wurden mit einer "Kaskaden-Reaktion" gezeigt, bei der Lösung nacheinander (!) in eine Reihe Kelchgläser umgegossen wird, in denen feste e vorgelegt sind.
	(a)	Beschreiben Sie für die Fe-Kaskade die jeweils ablaufenden Reaktionen (Beobachtungen, Reaktionsgleichungen) sowie Aufbau und Farbe der jeweils entstehenden Eisen-Spezies (Start mit reinem Wasser). i. Eisen(III)-Chlorid
		ii. Ammoniumthiocyanat
		iii. Natriumfluorid
		iv. gelbes Blutlaugensalz
	(b)	Benennen Sie die Produkt-Komplexe der Reaktionen i i. und iii. nach der Komplex-Nomenklatur korrekt. ii. iii.
	(c)	Beschreiben Sie (ggf. mit Skizze) die Festkörperstrukturen der ersten und der letzten Fe-Spezies der Reaktionskaskade. Vergleichen und begründen Sie deren Farbintensitäten.

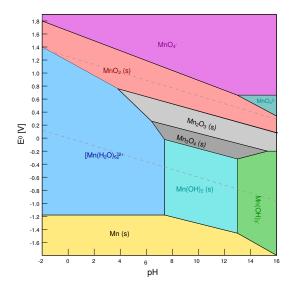
- 3 In der Baustoffchemie werden die Abkürzungen "C", "S", "A" und "H" verwendet, die das Aufstellen der ablaufenden Reaktionen stark vereinfachen. Formulieren Sie die entsprechenden chemischen Gleichungen stöchiometrisch genau:
 - (a) Beim Brennen von Kalk entsteht "C":
 - (b) Beim Löschen von gebranntem Kalk entsteht "CH":
 - (c) Bei der Herstellung von Zementklinker entstehen "C $_3$ S", "C $_2$ S" und "C $_4$ A" im Verhältnis 3:1:1:

$$\underbrace{-\text{Kalk}}_{\text{Kalk}} + \underbrace{\text{Al}_2[\text{Si}_2\text{O}_5(\text{OH})_4]}_{\text{Tonminerale}} + \underbrace{-\text{S}}_{\text{S}} - \underbrace{-\text{C}_3\text{S}}_{\text{C}_3\text{S}} + \underbrace{-\text{C}_2\text{S}}_{\text{C}_4\text{A}} + \underbrace{-\text{C}_4\text{A}}_{\text{C}_4\text{A}} + \underbrace{-\text{C}_4\text{A}}_{\text{C}_4\text{A}}_{\text{C}_4\text{A}} + \underbrace{-\text{C}_4\text{A}}_{\text{C}_4\text{A}} + \underbrace{-\text{C}_4\text{A}}_$$

(d) Skizzieren Sie den Ofen, der für die Klinkerherstellung (c) verwendet wird. Erläutern Sie in Stichworten die Funktionsweise und die Reaktionsbedingungen.

- (e) Welche Umweltproblematik ergibt sich aus der gigantischen Menge an Zement, die weltweit produziert wird?
- (f) Beim Abbinden von Zement bildet sich neben amorphen "CSH"-Phasen Portlandit "CH".


$$\underbrace{\qquad \qquad }_{C_3S} + \underbrace{\qquad \qquad }_{H} \longrightarrow \underbrace{CaSiO_3 \cdot H_2O}_{CSH} + \underbrace{\qquad \qquad }_{CH}$$

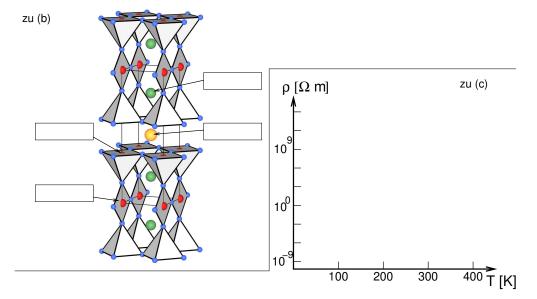

- (g) Welche Bedeutung hat dieser Porlandit für die Eigenschaften des Betons?
- (h) Weil das Abbindungen dieser "CSH"-Phasen im Beton zu komplex sind \mapsto worauf basiert die Verfestigung von ...
 - ... gelöschtem Kalk?
 - ... Gips?

- 4 Die vielfältige und pH-abhängige Redoxchemie von Mangan in wässrigen Systemen kann dem Pourbaix-Diagramm entnommen werden.
 - (a) Begründen Sie die breiten Stabilitätsfelder der folgenden Spezies mit der jeweils vorliegenden Elektronenkonfiguration und Bindungssituation:

- (b) Formulieren Sie für die beiden folgenden Reaktionen die stöchiometrisch exakten Gleichungen und verifizieren Sie deren Ablauf anhand des Pourbaix-Diagramms (Produkte + Edukte eintragen).
 - i. Umsetzung einer stark basischen Permanganat-Lösung mit Natrium-Perborat (Hinweis: als aktives Reagenz kann $\rm H_2O_2$ formuliert werden)
 - ii. Manganometrische Titration von Mangan(II) im Sauren.
- (c) Machen Sie Vorschläge für die Kristallstrukturen (nur Angabe des Strukturtyps und der Mn-Koordinationszahl) für die übrigen Feststoffe im Pourbaix-Diagramm:

i.
$$Mn_2O_3$$

ii.
$$Mn_3O_4$$


iii.
$$Mn(OH)_2$$

•	Nach dem Konzept der Ordnungsvarianten (sog. 'kristallographische Überstrukturen' assen sich die Festkörperstrukturen komplexerer Verbindungen aus einfachen Basisstrukturen entwickeln.	′
	 (a) Skizzieren Sie die Kristallstrukturen von Cs und CsCl und erläutern Sie anhand diese Beispiels das o.g. Konzept. Cs CsCl	S
	(b) Erläutern Sie die grundlegenden Bindungskonzepte, mit denen sich die Stabilitäter von Metallen wie Cs und Salzen wie CsCl generell erklären lassen. Metall:	n
	Salz:	
	(c) In beiden Fällen sind die Konzepte aus (b) nicht alleine strukturbestimmend. Welch Abweichungen/Besonderheiten zeigen sich für die beiden Feststoffe: Cs:	e
	CsCl:	
	(d) Zeigen Sie analog wie für das Paar in (a) auch für die Legierungen CuAu und CuAu den Bezug zum Cu-Typ. Skizzieren Sie hierzu auch diese beiden Strukturen.	13
	(e) Erläutern Sie (nur in Worten) den Aufbau der Strukturen von Korund (α -Al $_2$ O $_3$) und der Ordnungsvariante Illmenit (FeTiO $_3$).	d

- **6** Kupfer kann je nach Bindungstyp und -partner Koordinationszahlen [CN(Cu)] von 2 bis 12 annehmen.
 - (a) Skizzieren Sie für alle vorkommenden Cu-Spezies die relevanten Ausschnitte aus der Komplex/Festkörper-Struktur. Benennen Sie das zugehörige Koordinationspolyeder von Cu.
 - Bei der Reaktion (Bitte Gleichung angeben!) einer Kupfer(II)-Sulfatlösung mit Kaliumiodid entsteht eine Cu-Verbindung mit Zinkblendestruktur.

• Bei der 'Fehling-Probe' tritt Kupfer mit der Koordinationszahl 4 und 2 auf.

- Mit Gold bildet Cu eine Legierung CuAu₃ mit CN(Cu)=12 [s. Aufg. 5(d)].
- (b) YBa₂Cu₃O₇ enthält 4- und 5-fach koordiniertes Kupfer. Markieren Sie alle Metall-Ionen (inkl. Oxidationsstufe) in der Abbildung der Struktur. Begründen Sie das Vorliegen der Koordinationszahl 4 mit der *d*-Elektronenkonfiguration.

(c) Zeichnen Sie im Diagramm oben rechts den Verlauf der Temperaturabhängigkeit des elektrischen Widerstands von $YBa_2Cu_3O_7$, $CuAu_3$ und Cu_2O (Cuprit) ein.

sehr elektropositiven Metalle Natrium und Aluminium lassen sich technisch nur tels Schmelzfluss-Elektrolyse gewinnen.
Nennen Sie die natürlich vorkommenden Rohstoffe, die zur Gewinnung dieser Elemente eingesetzt werden (Formel und Mineral-Name). Na:
Al:
Skizzieren Sie die Elektrolysezelle für die Gewinnung EINES der beiden Elemente Ihrer Wahl und nennen Sie die wichtigsten physikalischen Betriebsparameter sowie Materialien und Schmelzzusammensetzung. Na oder Al:
Formulieren Sie die Reaktionen der beiden Metalle mit Wasser
Na:
Al:
und ihre Reaktion mit konzentrierter Natronlauge.
Na:
Al:
Neben der Verwendung als Reduktionsmittel werden technisch auch einige wenige Verbindungen auf dem Weg über die elementaren Metalle hergestellt. Nennen Sie je 2 Beispiele für entsprechende Verbindungen:
bindungen auf dem Weg über die elementaren Metalle hergestellt. Nennen Sie je 2
t

8	${f Nb}$ und ${f Nd}$ sind zwei kritische "High-Tech" Metalle, bei denen die Abtrennung von vergesellschafteten Elementen schwierig ist.
	(a) Geben Sie einen Rohstoff für die Gewinnung von \mathbf{Nd} an.
	(b) Welche Trennprobleme ergeben sich aus diesem Rohstoff, und mit welchen Basisprozessen wurden diese früher bzw. werden sie heute technisch gelöst?
	(c) $\mathrm{Nd_2Fe_{14}B}$ ist die wichtigste Nd-Verbindung. Wie wird diese Verbindung hergestellt? Begründen Sie den praktische Nutzen dieser Legierung mit den vorliegenden Eigenschaften.
	(d) Was versteht man unter Nd:YAG? Nennen und begründen Sie auch hierfür den praktischen Nutzen aus den Eigenschaften.
	(e) Nb wird aus dem Mineral "Coltan", chemisch FeNb ₂ O ₆ (<u>Col</u> umbit) mit FeTa ₂ O ₆ (<u>Tan</u> talit) hergestellt. Warum kommen Nb und Ta vergesellschaftet vor und sind ebenfalls sehr schwer voneinander zu trennen? [Hinweis: Übertragen/Bedenken Sie alle Aspekte/Probleme der Nd-Abtrennung.]
	(f) KEINE Frage: Die Hauptanwendung von Nb ist die für den Supraleiter Nb $_3$ Sn, das abgetrennte Ta $_2$ O $_5$ ist DAS Material für Kondensatoren.